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Introduction

1. INTRODUCTION

CASAL (C++ algorithmic stock assessment laboratory) is a generalised age- or size-
structured fish stock assessment model that allows a great deal of flexibility in specifying the
population dynamics, parameter estimation, and model outputs.

This manual provides information on how to use CASAL, including how to run CASAL, how
to set up the input data files, descriptions of the population dynamics and estimation methods,
and how to generate outputs. It also contains a brief overview of the technical specifications
of the software, and examples of models using CASAL.

CASAL is designed for flexibility. It can implement either an age- or size-structured model,
optionally also structuring the population by sex, maturity, and/or growth-path. It can be used
for a single stock for a single fishery, or for multiple stocks, areas, and/or fishing methods.
The user can choose the sequence of events in a model year. The data used can be from many
different sources of information, for example catch-at-age or catch-at-size data from
commercial fishing, survey and other biomass indices, survey catch-at-age or catch-at-size
data, and tag-release and tag-recapture data. Estimation can be by least-squares, maximum
likelihood, or Bayes.

As well as generating point estimates of the parameters of interest, CASAL can calculate
likelihood or posterior profiles and can generate Bayesian posterior distributions using Monte
Carlo Markov Chain methods. CASAL can project stock status into the future using stochastic
recruitment and can generate a number of yield measures commonly used in New Zealand
stock assessment, including MCY, CAY, F,,.., Fo;, deterministic MSY, and CSP.






Getting started: CASAL end user licence

2. GETTING STARTED
2.1 CASAL end user licence

CASAL (including the software, documentation, examples and other ancillary files) is not
free software. You may not distribute CASAL or modify CASAL under any circumstances
without the written authorisation of the National Institute of Water and Atmospheric Research
Limited of 269 Khyber Pass Road, Newmarket, Auckland (NIWA).

You may use CASAL for non-commercial or evaluation purposes only. You may make copies
of this software only as reasonably required for backup purposes. You must not distribute, sell
or otherwise make CASAL available for use by a third party. You must not use all or any part
of CASAL in conjunction with any product or service (including training or consulting) for
commercial gain.

NIWA grants you a non-exclusive and non-transferable right to use CASAL only in
accordance with the terms of this licence. NIWA reserves the right to refuse to license
CASAL to any person without giving reasons thereof. Requests for the use of CASAL outside
the terms of this licence should be directed to NIWA (see http://www.niwa.co.nz/ or email
CASAL @niwa.co.nz).

This licence agreement is formed when you accept the terms of this licence by using or
running CASAL.

NIWA reserves the copyright and all other intellectual property rights in CASAL.

NIWA makes no representations or warranties regarding the accuracy of CASAL, the use to
which CASAL may be put or the results to be obtained from the use of CASAL. Accordingly
NIWA accepts no liability for any loss or damage (whether direct or indirect) incurred by any
person through the use of or reliance on CASAL.

NIWA is to be acknowledged in publications relating to the use of or from conclusions drawn
from CASAL. However, you must not, without written permission, use the name or any
trademark or logo of NIWA to claim any sponsorship, endorsement, approval or affiliation or
other association with NIWA by virtue of this licence.

The CASAL software, documentation, example and other ancillary files are distributed in the
hope that they will be useful for non-commercial or evaluation purposes only, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular

purpose.

This licence is governed by and construed in accordance with the laws of New Zealand.

2.2 Version

This document details the usage of CASAL version v2.07-2005/08/21. The version number
printed by CASAL is suffixed with a date in format yyyy/mm/dd. This is the last UTC date
on which its source files were officially modified. User manual updates will usually be issued

for each minor version or date release of CASAL, and can be obtained, on request, from
CASAL @niwa.co.nz.
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2.3 Citing CASAL
A suitable reference for CASAL and this document is:

Bull, B.; Francis, R.I.C.C.; Dunn, A.; McKenzie, A.; Gilbert, D.J.; Smith, M.H. (2005).
CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.07-
2005/08/21. NIWA Technical Report 127. 272 p.

2.4 System requirements

CASAL is available for Redhat Linux 7.3 and from the command prompt under most
Microsoft Windows operating systems.

Several of CASAL's tasks are highly computer intensive and a powerful processor is
recommended. We recommend a minimum of 64 megabytes of free RAM for running
CASAL (although, depending on the scope of the problem, you may need much more). The
program itself requires less than 10 megabytes of hard-disk space but output files can
consume large amounts of disk space. Depending on number and type of user output requests,
the output could range from a few hundred kilobytes to several hundred megabytes.

2.5 Necessary files

In Linux, only the executable file casal is required to run CASAL. In Windows, you need
the executable file casal.exe.

2.6 Useful add-ons

No software other than the appropriate operating system or emulation package is required to
run CASAL. However, as CASAL offers little in the way of post-processing of the output,
most users will wish to have a package available that allows tabulation and graphing of model
outputs. We recommend the use of software packages such as Microsoft Excel
(http://www.microsoft.com), S-Plus (http://www.insightful.com), or R (http://www.r-
project.org) (Ihaka & Gentleman 1996).

You may also wish to use the “extract CASAL output” S-Plus/R functions for post-processing
CASAL output (see Section 13). This 1is distributed as the script file
extract_CASAL.v2.07.s (for either S-Plus or R) or as the R library casal.

A useful package for post-processing and analysis of Monte-Carlo Markov Chain (MCMC)
Bayesian output is the S-Plus/R library “Bayesian Output Analysis Program (BOA)” — see
Smith (2001). Information about this package can be found at http://www.public-
health.uiowa.edu/boa. A function to read the MCMC output from CASAL for use with BOA
is included with the S-Plus/R add-on.

The utility program simCASAL is available for assisting in running simple operating
model/estimation model experiments in CASAL. See Section 12.1 for details.
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Getting started: Getting help

2.7 Getting help

CASAL is distributed as unsupported software. NIWA does not provide help for users of
CASAL outside of NIWA. While we would appreciate being notified of any problems or
errors in CASAL, updates may or may not correct these problems or errors — see Section
11.3 for how to report errors. Information about CASAL can be found at
http://www.niwa.co.nz/ncfa/tools/casal/. The maintainer of this software, documentation, and
associated files can be contacted at CASAL @niwa.co.nz.

2.8 Technical specifications

CASAL is compiled using gcc, a freeware C/C++ compiler developed by the GNU Project
(http://gcc.gnu.org). The current version has been compiled on Linux using gcc version 3.2.3
(20030425) and on Microsoft Windows using MinGW gcc version 3.2.3 (mingw special
20030504-1). Note that the output from CASAL may differ slightly on the different platforms
due to different precision arithmetic or other platform dependent implementation issues.

CASAL uses a quasi-Newton optimiser and scalar, vector, and matrix types from the
Betadiff automatic differentiation software package. Betadiff emulates most of the
functionality of an early version of AUTODIF (Fournier 1994), and is based on a modified
version of the program ADOL-C v1.8.4 “A package for automatic differentiation of
algorithms written in C/C++" (http://www.math.tu-dresden.de/~adol-c) developed by a team
including Andreas Griewank (Technical University of Dresden, griewank@math.tu-
dresden.de). A suitable reference for ADOL-C is Griewank et al. (1996).

The optimiser used by Betadiff is based on the main algorithm of Dennis Jr. & Schnabel
(1996).

The random number generator used by CASAL is the newran random number generation

package (Davies 1998), and uses the Lewis-Goodman-Miller algorithm with Marsaglia
mixing.
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3.  RUNNING CASAL

CASAL is controlled by command line arguments, which are used to tell it what task you
want to do, for example, run the model, estimate the parameters, or do a MCMC run. Section
3.1 lists these command line arguments.

CASAL gets most of its information from input data files. The program looks for three files,
population.csl, estimation.csl, and output.csl, which contain population,
estimation, and output parameters respectively (although the names of these files can be
modified, see later). Section 3.4 describes how to construct a CASAL data file — the
population, estimation, and output file parameters are listed in Sections 8, 9, and 10
respectively.

Note that the information is read in from the three data files at the start of each CASAL run.
As a result, you can change the data files and start another run in the same directory before
the first run is finished — providing that you make sure that the outputs of the two runs are
sent to different destinations.

CASAL uses both the standard output and standard error; we suggest redirecting both into
files. With the bash shell, you can do this using the command structure,

(casal [arguments] > out) >& err

For casal -r, —e, or —-E, the standard output dump can be processed using the extract
CASAL output S/S-Plus/R functions (Section 13).

3.1 Command line arguments
The call to CASAL is of the following form.:

casal [-1] [-r] [-e] [-E] [-p] [-m] [-a number] [-C filelist
-S outfile] [-s number prefix] [-v outfile] [-P outfile]
[-Y] [-f prefix] [-F suffix] [-q] [-Q] [-1i infile]
[-I infile] [-O outfile] [-o outfile] [-g RNG_seed]
[-n name]

The call should include exactly one of the following “task”” arguments.

-1 Display the CASAL end user licence.

-r Run the population section once only and calculate the objective function
(see Section 6). Print out the free parameters, the objective function and
its components, the fits and residuals if requested (Section 6.8), and the
output quantities (Section 7.2).

-e Calculate the point estimate of the parameters (Section 6.3). Print outputs
as per —r.

-E As per—-e but using finite differences instead of automatic
differentiation (Section 6.3).

-p Calculate likelihood or posterior profiles (Section 6.4).

-m Use MCMC (Section 6.5) to sample the posterior distribution of the
parameters. See Section 3.2 for MCMC procedure.

—a [number] Recover the specified MCMC run from its results files; continue the run

and append further results to the results files. See Section 3.2 for MCMC
procedure (see also —n).
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-C

—S

-V

-P

[filelist]

Concatenate the MCMC results files for the specified files into a single
set of samples from the posterior. Reduce the sample size by random or
systematic sub-sampling if requested. Optionally apply prior re-
weighting (Section 6.5). The £i1elist argument should be a list of the
(full) names of samples files, separated by white space. Use —-S to
specify the file into which to dump the results. See Section 3.2 for the
MCMC procedure.

[number prefix] Generate simulated observations, i.e., use CASAL as a

[outfile]

[outfile]

simulator (Section 6.9). You must use —1i to provide the name of a file
containing free parameters, either one set (e.g., a point estimate) or
multiple sets (e.g., a posterior sample). For each set of parameters
supplied, number simulations are carried out. The results are dumped to
files whose names are generated by combining the filename prefix
specified, the number of the parameter set, and the number of the
individual simulation (e.g., if prefix=my_simulate, then the third
set of simulated observations for the second set of true parameters will
be dumped into a file my_simulate.par2.sim3). If number=1,
then the . sim[n] part of the filename is omitted.

Output the values of the output quantities (Section 7.2). You must use
—1i to provide the name of a file containing a posterior sample. Results
are dumped into outfile. Use this option to analyse the results of a
MCMC run.

Calculate projected outputs (Section 7.3). You must use —1i to provide
the name of a file containing free parameters, either one set (i.e., a point
estimate) or multiple sets (i.e., a posterior sample). Results are dumped
into outfile.

Calculate yield estimates (Sections 7.4, 7.5), e.g., MCY, CAY,
deterministic MSY, CSP. You must use —1 to provide the name of a file
containing free parameters, either one set (i.e., a point estimate) or
multiple sets (i.e., a posterior sample).

In addition, you can use any of the following arguments:

-f
-F

-q
-Q

-1

[prefix]
[suffix]

[infile]

Use a prefix on the names of the three input parameter files.

Replace the standard cs1 suffix used on the input parameter filenames
with a user defined suffix.

Run gquietly, i.e., suppress printing from within the population section.
Suppress all messages and warnings, i.e., all standard error output. Note
that this option is not recommended for general use, but can be used to
suppress verbose output if CASAL is used as a part of a Monte-Carlo
simulation controlled by an external program.

Input one or more sets of free parameter values from a text file.

With —r, run the model with each.

With —e, do a separate point estimate starting at each.

With —p, use the first set as the initial minimum. (The actual minimum,
not the starting point of the minimiser. See Section 6.4).

With —m, use the first set as the starting point for the pre-MCMC point
estimate, the second set (if there are two) as the starting point for the
chain, and ignore the rest.

With —s, produce simulated observations for each.

With -v, calculate output quantities for each.

With —P, calculate the free parameter values for each.

14
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With -Y, calculate the yield estimates.
(See Section 3.3 for the free parameter file format and Section 3.2 for
MCMC procedure.)

-I [infile] with —m —1, input the covariance matrix used for MCMC from file. (See
Section 3.2 for MCMC procedure.)

-0 [outfile]l Output (no append) a set of free parameter values to a text file.

With —r, output the free parameter values used for the run (either those
specified with —1i, or the base values in the parameter files if —1i is not
used)

With —e or —E, output the estimated parameter values.

The text file is in an appropriate format for use with —i (Section 3.3).

If the file exists already, it is overwritten.

-0 [outfile] Output (with append) a set of free parameter values to a text file.

Same as —O above, except that if the file already exists, it is appended to.

-S [outfile] With —C, dump the posterior sub-sample into outfile.

-g [RNG_seed] With —m, —-s, or -Y, seed the random number generator with this
positive (long) integer value. If this is not specified, then the default is
defined as a number based on the computer clock time.

-n [name] Used with —-m or —a when chains are being carried out on several
computers. The argument is the name of the current machine, which is
inserted into the names of the MCMC results files. That way you can
copy the files from all the chains onto a single computer and, because
they have different names, they will not overwrite each other.

3.2 Running a Bayesian analysis in CASAL

A full Bayesian analysis is more time consuming than the other CASAL tasks, and involves
editing input files to achieve different tasks. The process of how to get CASAL to run a
Bayesian analysis is described here. Section 6.5 describes the algorithms used by CASAL.

The first step in producing Monte Carlo Markov Chain (MCMC) results is to do a —m run.
This produces a single Markov Chain. An initial point estimate is produced before the chain
starts. This is done in order to calculate an approximate covariance matrix of the free
parameters, but may also be used as the starting point of the chain. You can specify the free
parameter values used as the starting point of the point estimation (as the first row of the file
invoked with —1i), and also optionally specify the free parameter values from which to start
the chain (as the second row of the file invoked with —1i). If you have specified that a free
parameter is fixed in MCMC, you still need to supply a value for it when using —i. Once the
MCMC commences (as opposed to the initial point estimate), the parameter will be fixed at
the supplied value.

The —m run produces two results files. The first file is samples. [run number], or if the
—n option is set it is samples. [name] . [run number]. It uses the free parameter file
format described in Section 3.3, i.e., a header row followed by many rows of parameter
values. The second file is objectives. [run number] or objectives. [name].
[run number]. It contains the standard output header produced by CASAL, the covariance
matrix used (if the covariance matrix is modified at one or more iterations of the chain, only
the initial version of the matrix is shown), and a columnar table (with one row per posterior
sample, giving the sample number, the posterior, prior, likelihood, and combined penalties
(all on the negative log-scale), the current step size, the acceptance rate so far, and the number
of times the covariance matrix has been modified so far.
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The run number is the first available positive integer, i.e., if the directory already contains a
file samples. [name] .1 but not samples. [name] .2 or objectives. [name] .2,
the next run number will be 2. Incidentally, can we suggest that the first thing you do after an
—m run is back up the results files. It may be distressing to inadvertently lose your only copy
of a chain that had been running for some time.

If your chain gets interrupted for some reason, you can use casal —a [run number] to
continue it rather than starting again from scratch (also include the argument —n [name] if
this was used). Make sure to use the same parameter files in the rerun as in the original run
(CASAL does not check).You will not get the same results as you would have if the original
chain had continued, because the random number sequence will be different. If the original
run was interrupted or crashed, make sure that the last lines of the samples and objectives files
were complete and that they each have the same number of lines once the headers are
removed (the printing process might have stopped partway through a line, in which case
CASAL would be confused by the partly finished results).

You may want to run multiple Markov Chains simultaneously if you have the hardware
resources. If you are using a shared file system, you can run multiple chains in the same
working directory. If your chains all use the same data files and you want to combine them
later to produce a single posterior sample, use —n with each chain with a different ‘machine
name’ argument to send the results to a different file. All the chains will then share the same
run number. Give each chain a different random number seed using —g (or the results may be
identical).

Optionally, you can provide a covariance matrix which will be used for the proposal
distribution when doing MCMC runs, using casal -m -I. There are at least two reasons
you may want to do this:

1. To save time. Currently CASAL has to do a point estimate at the start of every
MCMC run in order to get an approximation to the covariance matrix. This can be
quite time-consuming. When doing multiple chains of the same model, you can
choose to calculate the covariance matrix once, then use it for all chains for that
model.

2. In situation where you have an alternative method of generating a covariance matrix
which might lead to better MCMC performance (e.g., by taking the covariance of a
sub-sample from an old chain).

If you do choose to provide a covariance matrix, CASAL subjects this to the usual
transformations (i.e., reducing very strong correlations, increasing very small diagonal
elements, zeroing rows and columns corresponding to ‘MCMC-fixed’ parameters, etc.). But
this feature may be easily abused. If you submit an inappropriate covariance matrix CASAL
may either not run, or alternatively poor MCMC behaviour may result. Note that CASAL
does not run any checks on the user supplied covariance matrix other than to ensure that it has
the correct dimensions.

The supplied covariance file should consist of a one-line comment followed by a square array
of numbers, without column headings or row labels. An easy way to create such a file is to
copy and paste from an objectives* file from a previous —m run or from the standard
output of an —e run with the output.csl file option @print.covariance=True. You
must also supply the starting point of the chain with —i, which must contain only one line of
data.

Use casal —C to combine a list of MCMC results files into a single posterior sample,
decimate it down to a sub-sample of a specified, manageable size, and apply posterior re-
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weighting if requested. You need to provide the samples file names, which are supplied after
the —C (the objective files with the same suffixes should also be present), and the name of the
file into which the sub-sample is dumped (in the free parameter file format described in
Section 3.3), which is supplied with —S. You should also set the burn-in period at this stage.

Use casal -v to calculate output quantities for a posterior sample, either the sub-sample
generated by casal —C or the original single-chain sample generated by casal —m.

An example of running a Bayesian analysis

A typical sequence for a ten-chain MCMC might be as follows. First, generate the chains,
specifying random number seeds and machine numbers,

(machine 1): casal —m -g 144 -n PCl
(machine 2): casal —m —-g 1812 -n PC2

(machine 10): casal —-m —-g 71 —-n PCI10
Files such as samples.PC4.1 will be generated (assuming this is the first MCMC run in
the directory). Back them up. Uh-oh: machine 2 had a power failure. To resume the run from

where it stopped,

(machine 2): casal -a 1 —-g 1812 —-n PC2
CASAL finds the previous output files, samples.PCl.1 and objectives.PCl.1,
resumes the MCMC where they ended, and appends the results from the rest of the chain to
these files.
Following this, copy all the output files onto one of the ten computers and run them through
an external MCMC diagnostics package. Next pool the ten chains (and sub-sample to reduce
the size of the result),

casal -C samples.PCl.1...samples.PCl0.1 -S subsample.dat

having first added the following to estimation.csl,

@MCMC
burn_in 100000

A sub-sample file is generated. Summarise the posterior,
casal -v quantities.dat —-i subsample.dat

Suppose that you want to check out the effect of using a different prior. Change the
estimation.csl file to specify the new prior, add the following to estimation.csl,

@MCMC
prior_reweighting 1

and then repeat the last commands,

casal -C samples.PCl.1...samples.PCl0.1 -S subsample.2.dat
casal -v quantities.2.dat —-i subsample.2.dat
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Finally, note that files in free parameter file format (including the posterior samples output by
casal —m and -C), and tables of output quantities (including the output of casal —v and
—P) can be read into S/S-Plus/R using the functions in Section 13.

3.3 Free parameter file format used by CASAL

In various situations it is useful to either write sets of free parameters to a file or to read sets
of free parameters from a file. For example:

® When doing MCMC with —m, a long list of sets of parameter values is generated.
They are saved to disk (so that they don’t consume memory and so that they can be
recovered if the program crashes partway through the chain) and can be re-loaded
later on.

® When a point estimate has been calculated with —e, the user may want to save the
parameter values and reload them later. For example, when running the model with
—r at the ‘optimal’ point.

®* When a point estimate has been calculated by another stock assessment package, the
user may want to run CASAL using the parameter values estimated by the other
package.

The same free parameter file format is used in all cases. There is one header line, consisting
of the name of each parameter (in command [ Iabel] . subcommand format), followed by
the length if it is a vector parameter, separated by single spaces. The header is followed by 1
or more sets of parameters, each written as a long vector on a single line.

A simple example of this is,

initialization.BO size_at_age.k 1 recruitment.YCS 30
10000 0.1 0.87 0.95 1.12...(27 more YCS)
15000 0.2 0.93 0.98 1.14...

Note that the 1 argument for size_at_age.k is compulsory — it is not a scalar but a
vector of length 1.

For input, the header must be exactly accurate or the program will reject the file. This is done
to check that the right parameters have been provided in the right order. However, there is no
check that the right number of parameters are supplied in the rows of the table.

Note that CASAL generates a line of data as output, suitable for use in a file with —1,
automatically when doing a run or an estimation (i.e., with —r, —e, or —E). To use this as an
input for a subsequent run, copy the appropriate lines (i.e., the lines immediately after “In a
format suitable for -i : 7) into a text file, and rerun CASAL with the -1
[file] option. CASAL can also generate a free parameter file using the —o or —O options
(the first appends to a file if it already exists, the second replaces it) automatically from a —r,
—e or —E run (in this case, if —e or —E is used with a multi-row —1i input file, then multiple
estimations will be done and multiple rows will be written to the —o or -0 file).

Free parameter files can be read into S/S-Plus/R using the functions in Section 13.
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3.4 Constructing a CASAL data file

The model is specified to CASAL via the population, estimation, and output parameters.
These are specified in the population.csl, estimation.csl, and output.csl
input data files (though you can modify these names using the —f and —F command-line
options). All the parameters that can be used are listed in Sections 8, 9, and 10 respectively.

The parameter files use the command-block format. A parameter file consists of any number
of command-blocks in any order. Each command-block either consists of a single command
(starting with the symbol @) and its arguments, or a command (starting with @) and an
optional label and one or more subcommands, i.e.,

@command arguments

or
@Qcommand [labell]
[subcommand arguments]
[subcommand arguments]

[...]

Blank lines are ignored, as is extra white space between arguments. Comments beginning
with ‘# are ignored. If you want to remove a group of commands or subcommands using ‘#,
then comment out the whole block, not just the first line. Alternatively, you can comment out
an entire block by placing curly brackets around the text that you want to comment out. Put in
a ‘{’ as the first character on the line to start the comment block, then end it with ‘}’. All lines
(including line breaks) between ‘{’ and ‘}’ inclusive are ignored. (These should ideally be the
first character on a line, but if not, then the entire line will be treated as part of the comment
block.)

Don’t put extra white space before a @ character (which must also be the first character on the
line). Make sure the file ends with a carriage return. Commands and subcommands must
consist of letters and/or underscores, and must not contain a full-point (*.”).

There is no need to mark the end of a command block. This is automatically recognised by
either the end of the file or the start of the next command block, which is marked by the @ on
the first character of a line.

Also note that the commands, sub-commands, and arguments in the parameter files are case
sensitive.

Some commands can never have subcommands (such as @initial). If a command has no
subcommands, then it has to have arguments, which are placed on the same line as the
command.

All other commands have no arguments, but have subcommands instead. Also,

e Some commands can be used multiple times in the same parameter file and must have
a different label each time (such as @abundance).

e Some commands can be used only once and may never have a label (such as
@annual_cycle).

® Some commands can be used one or more times: if used once they don’t need a label,
but if used more than once they do need labels (such as @recruitment).

¢ Some commands can be used one or more times and don’t need labels: they are
internally labelled 1 the first time they are used, then 2, 3 ... (such as @Qgrowth).
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The parameter listings say what kind of label or argument each command and subcommand
takes. Arguments can be of the following types:

switch true/false

integer an integer

constant a real number

estimable a real number which can be estimated

constant vector a vector of real numbers

estimable vector a vector of real numbers which can be estimated
ogive an ogive which can be estimated

string a string

vector of strings a list of strings.

Parameters of type constant vector, estimable vector, or vector of strings contain one or more
entries separated by white space (tabs or spaces).

Switches are parameters which are either true or false. Enter ‘true’ as true, t, or 1, and
‘false’ as false, £, or 0. Note that this is one of the few situations where CASAL is case
insensitive.

Ogive parameters (Section 5.6) are the most complex to enter. You need to specify the type of
the ogive, then the ogive parameters. For example, a logistic selectivity ogive with the label
‘trawl’ with parameter values asp=3, a,,0s=2 might be entered as,

@selectivity trawl
all logistic 5 2

where ‘all’ specifies that this ogive applies to all fish, i.e., males and females, mature and
immature. If you want a size-based ogive in an age-based model, you need to insert the word
‘size_based’ between the subcommand and the ogive type. For example,

@selectivity trawl
all size_based knife_edge 30

See Section 5.6 for an explanation of how the size-based ogive is converted to an age-based
ogive.

Not all parameters can be estimated — only those of type estimable, estimable vector or ogive
can be estimated. You decide which of these CASAL should estimate, the free parameters
(Section 6.2). Sometimes an ogive has some non-estimable parameters, for example, an
allvalues_bounded ogive has two non-estimable parameters, the lower and upper
bounds — the remaining parameters give the values between these bounds and can be
estimated normally (as a single vector parameter).

When CASAL processes these files, it translates each command and each subcommand into a
parameter. Each parameter has a name. For commands, the parameter name is simply the
command name. For subcommands, the parameter name format is either,

1. command[label] .subcommand if the command has a label, or
command [i] .subcommand if the command is occurring for the ith time and is
auto-numbered, or

3. command.subcommand if the command has no label and is not auto-numbered.
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The user needs to convert commands to parameter names in this way in several situations. For
example, if you have constant natural mortality,

@natural_mortality
all 0.3

and you want to estimate the mortality rate M, you need to tell CASAL that the parameter
named natural_mortality.all is to be estimated, by putting in commands,

destimate
parameter natural_mortality.all

Similarly, if you have,

@selectivity trawl
male logistic 5 2

and you want to apply some kind of penalty to the logistic selectivity ogive, you will need to
tell CASAL that the parameter named selectivity[trawl] .male is to be penalised

CASAL allows you to supply a single line comment within the input parameter files, which is
written to any output files generated by CASAL. Here, use the command @comment
followed by the comment text. This can be useful in assisting identification of output files
from a particular run or series of runs.

3.5 CASAL exit status values

When the CASAL completes its tasks (or errors out), it returns an exit status value to the
operating system. The exit status value can be useful when, for example, CASAL is being
called by another program as a means of identifying the reason CASAL exited.

CASAL can return the following values,

0 CASAL completed its task successfully, and if an estimation run (i.e.,
casal —-e/-E), then the minimiser reported successful convergence.

1  CASAL completed an estimation run (i.e., casal —e/-E), but the minimiser
reported that it was unable to determine if it had converged.

2  CASAL completed an estimation run (i.e., casal —-e/-E), but the minimiser
reported that it failed to obtain convergence.

11 CASAL halted because of a “Fatal error”

12 CASAL halted because of a “Betadiff error”.

Note that CASAL can only return an exit status of 1 or 2 if casal was called with —e/-E
command. In addition, in some circumstances the minimiser within CASAL can be called
multiple times within a single run (for example if command call to CASAL was
casal -e -1 pars.dat, where pars.dat contains more than one line of free parameters).
In such cases, the return value from CASAL is greatest number from any of the single
estimation steps.
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4. OVERVIEW OF THE CASAL MODEL
4.1 Model components
A fisheries model in CASAL consists of three parts.

1. The population section is the model of the fish population dynamics. It includes processes
such as recruitment, migration, natural and fishing mortality.

2. The estimation section carries out the estimation of free parameters. The estimation will
be based on an objective function (weighted sum of squares, negative log likelihood,
negative log posterior, etc.). The estimation section is used to find a point estimate, which
is the set of parameter values that minimises the objective function. It may also be used to
characterise the uncertainty in the point estimate, via either profiling or producing a
Bayesian posterior.

3. The output section produces results for the user. These may include parameter estimates,
the objective function, fits and residuals, projections, yield estimates, etc.

4.2 Parameters
Parameters are quantities that describe how things work. There are three types:

1. population: both those related to population structure and biology, e.g., size at age, weight
at size, maturation, stock-recruitment relationship, natural mortality, migration
parameters, and those concerning the fishery, e.g., catches, tagging events, selectivity
ogives, maximum exploitation rates.

2. estimation: needed for the estimation procedure, e.g., choice of estimation method,
observations and their error structures or weights, which parameters are to be estimated,
priors, starting values, minimiser control values.

3. output: indicating which outputs the program should produce, e.g., what should be printed
as the model runs, which quantities should be written to file, etc.

Some parameters may function as switches, allowing the user to choose between available
options (e.g., between Ricker or Beverton & Holt stock-recruitment relationships, or between
normal or lognormal distributions).

Each time a model is run the population and estimation parameters will fall into two classes;
those which are assumed known, and those that are free (i.e., to be estimated). It is up to the
user to specify which parameters are free. Not all parameters are estimable. Some, such as
switches, would never be estimated. (Note that while CASAL may allow a parameter to be
estimated, this does not mean that the modeller should necessarily allow it to be estimated.)

4.3 Observations

Observations are data which allow us to make inferences about a fishery (i.e., to estimate
parameters). Examples include CPUE indices, survey biomass estimates, catch at age,
commercial catch length frequencies, etc. The process of estimation in CASAL involves
finding values for each of the free parameters so that each observation is as close as possible
to a corresponding expected value. Note that catches are treated as population parameters, not
observations.
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5. THE POPULATION SECTION
5.1 Overview

The basic structure of a CASAL population model is defined in terms of an annual cycle, time
steps, states, and transitions.

The annual cycle defines what processes happen in each model year, and in what sequence.
(In line with the New Zealand fisheries management framework, CASAL runs on an annual
cycle rather than, for example, a 6-monthly cycle.)

Each year is split up into one or more time steps, with at least one process occurring in each
time step. You can think of each time step as representing a particular part of the calendar
year, or you can just treat them as an abstract sequence of events.

The state is the current status of the population, at any given time. The state can change one
or more times in every time step of every year. The state object must contain sufficient
information to figure out the future course of the fishery (given a model and a complete set of
parameters).

There are a number of possible changes in the state, which are called transitions. These
include processes such as recruitment, natural mortality, fishing mortality, disease mortality,
ageing, migration, and tagging events.

The division of the year into an arbitrary number of time steps allows the user to specify the
exact order in which processes and observations occur. The user needs to specify the time step
in which each process occurs. If you ask for more than one process to occur in the same time
step, there is a default order in which they occur (see Section 5.3). If you don’t want things to
happen in this default order, just split them into different time steps.

The key element of the state is the partition. This is a broadly applicable concept that can be
used to describe many different kinds of fish model. The partition is simply a breakdown of
the total number of fish in the current population into different kinds of fish. (Note that the
partition records numbers of fish, not biomass.) The fish are categorised by various
characters. The permissible characters are: size class or age class, sex, maturity, area, stock,
tag, and growth-path. The user chooses:

®  Whether the partition is subdivided by size class or age class (not both).

¢  Which of the other characters are included in the partition, e.g., the number of areas,
stocks, tagging events, or growth paths (if any of these characters are included in the
partition).

The resulting partition can be conceptualised as a matrix, where the columns are size or age
classes and the rows represent combinations of the other characters. Then the number in each
cell of the matrix is the number of fish with the corresponding combination of characters.

For an example of these ideas, consider a model of a single stock with a spawning and non-
spawning fishery. The non-spawning fishery happens over most of the year (say 10 months)
in the home area. The mature fish then migrate to the spawning area, where the spawning
fishery operates. At the end of spawning, these fish, along with the recruits from the previous
year, migrate back to the home area. The modeller decides that fish will be divided in the
partition by age, sex, maturity, and area (spawning and home grounds). So the partition has 8
rows (2 sexes X (mature or immature) x 2 areas) and one column per age class.

The modeller decides to use the annual cycle in Table 1.
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Table 1: The annual cycle of a simple model.

Time Time Area Activity
step Non-spawning Spawning
Jan—Oct 1 Mature and Empty Fishing in the home area.
immature fish
End of Oct 2 Immature fish  Mature fish ~ Mature fish migrate to the spawning area.
Nov-Dec 3 Immature fish ~ Mature fish  Fishery in the spawning area.
End of Dec 4 Mature and Empty Recruits from the previous year appear in the
immature fish spawning area. Along with the mature fish,

they migrate to the home area.

So they define four time steps, labelled 1 through 4. Step 1 includes the non-spawning fishery.
Step 2 includes the migration to the spawning area. Step 3 includes the spawning fishery. Step
4 includes recruitment and the migration back to the home area. (In fact, they could have used
only 3 time steps, by using a single step in place of their steps 2 and 3. Because the default
order of processes within a time step places migrations before fisheries, the processes would
still have occurred in the right order.) There are other details to be sorted out, such as the
proportion of natural mortality occurring in each time step, but this gives the basic idea.

This structure can be used to implement complex models, with intermingling of separate
stocks, with complex migration patterns over multiple areas, and multiple fisheries using
different fishing methods and covering different areas and times. Note that there is little point
in using a complex structure to model a stock when there are no observations to support that
structure. In other words, you should use a structure for your model that is compatible with
the data you have available.

The model is run from an initial year up to the current year. It can also be run past the current
year to make projections — things that happen in the future — up to the final year.
Alternatively, for yield calculations, it is run over an abstract simulation period.

5.2 The state object and the partition

The key component of the state object is the partition, a matrix of numbers of fish by
combinations of characters. The columns can either be age or size classes, the rows are
combinations of the following characters:

Sex (male or female).

Area (any number of areas, named by the user).

Stock (any number of stocks, named by the user).

Maturity (immature or mature).

Growth-path (any number of growth-paths).

Tag. (any number of tagging events, but note that CASAL will always create a
“no_tag” member of the partition in addition to those that you specify).

A stock is defined as a subpopulation of fish which recruits separately. See Section 5.11 for
the treatment of maturity when it is not a character in the partition.

Growth-paths are a feature used to implement some persistence of size at age in an age-based
model that uses some length/size data. Each growth-path has its own growth curve, and the
size-based model features will hence have different effects on different growth-paths. So, you
need to tell CASAL the following:
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Whether the model is age- or size-based.

The number and nature of size classes in a size-based model.

The minimum and maximum age classes in an age-based model.

Whether there is a plus group.

Whether the partition is divided by sex.

Whether the partition is divided by maturity.

Whether the partition has growth-paths, and, if so, how many.

Whether the partition has multiple stocks, and, if so, how many, and their names.
Whether the partition has multiple areas, and, if so, how many, and their names.
Whether the partition includes tagged fish, and, if so, how many, and the names of the
tag partitions.

Age classes are always 1 year wide, except that the maximum age group can optionally be a
plus group. You need to choose the minimum and maximum age classes. Size classes are
defined by the user. You need to specify how many size classes there are, the lower bound of
each size class, and whether the last size class is a plus group, or if not, what its upper bound
is. The relevant parameters are class_mins and plus_group. The class_mins
parameter contains the lower bound of each class, and concludes with the upper bound of the
last class if it is not a plus group. If, for example, you wanted size classes of 30—40, 40-50,
50-60, and 60-70+ cm, in which case you would set class_mins 30 40 50 60 and
plus_group true. Whereas if you wanted 3040, 40-50, 50-60, and 60-70 cm, you
would set class_mins 30 40 50 60 70 and plus_group false.

The user can specify that some combinations of characters are not possible. For example,
immature fish might never occur in the area you have labelled spawn_ground. To do this,
you use the exclusions parameters. In this case, you would set,

exclusions_charl maturity
exclusions_vall immature
exclusions_char?2 area
exclusions_val2 spawn_ground

It’s a good idea to use the exclusions parameter wherever it is appropriate because it
reduces the size of the partition (so, with the above example, there will be no rows in the
partition corresponding to immature fish in area spawn_ground) and can save memory and
calculation time.

The other component of the state object in CASAL is a vector of spawning stock biomasses
(SSBs, mid-spawning season biomasses of spawning fish) for each stock. CASAL needs to
include this in the state object so as to calculate future recruitments, if there is a stock-
recruitment relationship.

5.3 The time sequence

The time sequence of the population model includes the years over which it is to run and the
annual cycle for each year. The model runs from the start of year initial and runs to the
end of year current. Projections extend up to the end of year final. The annual cycle can
contain the following transition processes:

e Ageing (in an age-based model).
® Recruitment.
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Maturation (if maturity is a character in the partition).
Migration (if the model includes more than one area).
Growth (in a size-based model).

Natural and fishing mortality.

Disease mortality.

Tag release events.

Tag shedding rate.

If two or more processes are specified for the same time step then they will happen in the
above order. This ordering is imposed only to simplify the specification of the annual cycle. It
does not restrict the user because it applies only to processes within the same time step. If, for
example, it is desired that maturation occur before recruitment then this can be done by
putting these processes in separate time steps.

The basic unit of fishing mortality is a fishery, defined as fishing mortality in a single area and
time step. You may need to split a single administrative fishery into multiple CASAL
fisheries, in which case you will need to partition the catch. (However this should often be
avoidable. If you have an observation partway through a fishery, you can specify that a
certain proportion of the mortality occurs before the observation, without needing to split the
time step into two.)

If there is more than one stock, recruitment is handled separately for each stock, but all stocks
must recruit in the same time step. There can be more than one maturation episode per year,
each of which can apply to only one stock, or all stocks equally. Similarly there can be more
than one growth episode per year, each of which can apply to only one stock, or all stocks
equally. The user can define any number of migrations in a given year.

To specify the time sequence, you need to tell CASAL the following:

The initial, current, and final years.

The number of time steps in each year.

The time step in which recruitment occurs, and the area to which each stock recruits

How SSB is calculated'.

In an age-based model, the time step at which ages are incremented.

If there are any migrations, the time step at which each migration occurs and the

source and destination areas. Note that if there are multiple migrations in a time step

and an area is the source of more than one migration, then the migrations will happen

in the order that they are defined in the population.csl file.

e [If maturity is a partition character, the number of maturation episodes per year, and
the time step at which each maturation episode occurs.

e In a size-based model, the number of growth episodes per year, and the time step at

which each growth episode occurs.

" The SSB (spawning stock biomass) is a common model output and is also the measure of abundance
used in stock-recruitment relationships in CASAL (where applicable). Different models define SSB in
quite different ways so we allow several options in CASAL as to how SSB is calculated. By default,
SSB is calculated for each stock as the mature biomass (of both sexes), in an area of your choice,
halfway through the natural and fishing mortality in a time step of your choice. It can alternatively be
calculated after some other specified proportion of the mortality (see Section 5.4.6). A ‘proportion
spawning’ multiplier can be applied to the mature biomass to get the SSB (in multi-area models this
would typically not be done, instead the appropriate proportion of fish would be migrated to the
spawning area). If maturity is not in the partition, then the modeller may nevertheless know that all fish
in the spawning area should be mature (i.e., because only mature fish are meant to migrate) but the
model does not ‘know’ this because maturity is not persistent. In this case the user can specify that the
SSB is the total biomass in the area, rather than using the mature biomass.
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¢ In an age-based model, the proportion of the year’s growth which has occurred by the
start of each time step'.

The proportion of the year’s natural mortality occurring in each time step.

The time step and area in which each fishery occurs.

Whether fishing mortality is instantaneous or uses the Baranov equation”.

If there is a disease mortality event, in which time step this occurs.

If tagging has been specified, when the tagging event occurs, how many fish by age
or size class, in which member of the partition to put the tagged fish, and the tag
shedding rates, if defined.

You then need to provide CASAL with details about how each process works. These
processes are described individually in Section 5.4.

When you define your annual cycle, there are a number of errors you can make. Some of the
less obvious ones are listed here. It is an error if:

e The sum of the proportions of the year’s natural mortality over time steps is not 1.

¢ In an age-based model, any element of growth_props is outside [0,1]; or if
growth_props is not 0 in the time step in which fish age; or if growth_props
diminishes between consecutive time steps without age incrementation having taken
place.

® In a size-based model, more than one growth episode occurs in the same time step,
unless they involve different stocks.

¢  You want to use the Baranov equation and there is a time step that includes two or
more fisheries in the same area.

5.4 Transitions between states

This section describes the various transition processes in CASAL. The transition processes, in
their default order, are:

Ageing i.e., age incrementation (in an age-based model)
Recruitment

Maturation (if maturity is a character in the partition)
Migration (in a multi-area model)

Growth (in a size-based model)

SR PN

! Fish growth in an age-based model is handled quite differently from a size-based model. The simplest
option is to assume that the mean size of a fish is based on its age, rounded down to the next lowest
whole number of years. So, for example, 2-year old fish have the same mean size whether they have
just passed their 2" birthday or whether they are about to turn 3. An alternative is to allow some fish
growth between birthdays. You can do this using the growth_props parameter. This is a vector with
one entry per time step. The mean size of fish of age a years (rounded down) in the ith time step is
calculated as if their age was (a+growth_props [i]). So, if the first entry of growth_props is
0.5, then, in time step 1, the mean size of 2-year-old fish is calculated as if they were age 2.5. The
default is growth_props = 0 (i.e., no growth between birthdays).

% Natural mortality and fishing mortality occurring in the same area and time step can be sequenced in
two different ways. The first option is to apply half the natural mortality, then to apply the mortalities
from all the fisheries instantaneously, then to apply the remaining half of the natural mortality. The
second options is to use the Baranov catch equation, which implies that natural and fishing mortalities
are simultaneous. We prefer the first option — the calculations are more straightforward and the result
typically about the same. However you can use Baranov if you want, except that we have not yet
implemented the Baranov equation for multiple fisheries in the same area in the same time step.
Whichever option you use is applied to all fisheries. More on this in Section 5.4.6.
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Mortality (natural and fishing)
Disease Mortality
Tag release events
Tag shedding rate

o 0o

5.4.1 Ageing (in an age-based model)

The ageing process is straightforward. Every fish increases in age by one year, except those
already in the plus age group (if it exists), which are unaffected. (Note that if there is no plus
group in the partition, then all fish older then the maximum age are “dropped off” the end of
the partition, i.e., die.)

5.4.2 Recruitment

A number of fish are added to the partition. In an age-based model, all recruiting fish are of
the minimum age. In a size-based model, you need to tell CASAL the mean and c.v. of the
size distribution of recruiting fish, which is assumed to be a normal distribution (and can
depend on sex and stock). Note that fish below the minimum of the range that defines the first
size class appear in that size class; and similarly fish above the maximum of the range that
defines the last size class appear in that size class.

For each stock, the number of fish added in year y is

R, =RyXYCS,_  ..%SR(SSB_, ,..)XCR(T_, ...)

where R, is the stock’s average recruitment (ignoring the stock-recruitment and climate-
recruitment functions); YCS are year class strength multipliers (also known as recruitment
multipliers); ye..r 1S the number of years after it is spawned that a year class enters the
partition; SR is the stock-recruitment function (SR = 1 if there is no stock-recruitment
relationship); CR is the climate-recruitment function (7 is a single exogenous variable such as

sea surface temperature, CR(T) = 1 if no climate-recruitment relationship).

Ry is an important parameter because it defines how large the stock would be, on average, if
there were no fishing. From Ry, CASAL can calculate B,, which is defined to be the SSB that
would exist if recruitment were equal to Ry, every year and there were no fishing
(alternatively, CASAL can calculate Ry from B, if the latter is specified). By has several
special roles in CASAL: in the stock-recruitment function (where, by definition, SR(By)=1);
and as a reference biomass in stock projections (see Section 7.3.2) and yield calculations
(Sections 7.4.2 and 7.5.1).

You should provide YCSs starting from year (initial-Yy...,) and extending up to year
(current —Yeuer)-

It can be a bit tricky to figure out what y,,., should be. In an age-based model, this depends on
the order of recruitment, ageing, and spawning processes within a year:

e [f recruitment then ageing then spawning, then y,,., should equal min_age+1.
e [f spawning then ageing then recruitment, then y,,,., should equal min_age—-1.
e If any other order, then y,,,,, should equal min_age.

CASAL will output a warning if the value of y,,,., you supply does not obey the above rule,
but will continue running.
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The stock-recruitment functions available are Beverton-Holt and Ricker (the alternative is no
stock-recruitment relationship, SR = 1). These are parameterised by the parameter steepness,
defined as /=SR(0.2B,). The functional forms for these relationships are:

Beverton-Holt: SR(SSB) = SSB/(I k-l (1 _S5B D

B 4h B

0 0

S 5[55371]
;1; I 4\ B,

0

The basic climate-recruitment relationships available are exponential, arctan, logistic (the
alternative is no relationship). All three are functions of a single exogenous variable 7, which
should be provided for years (initial—y.u,) to (current —y..,) at least, and can also
extend further into the future (for use in projections). Two additional climate-recruitment
functions have been added for situations where the ‘climate variable’ 7 is actually a prediction
of year class strength, typically from a climate-recruitment regression analysis (e.g., Bull &
Livingston 2001). The identity climate-recruitment relationship allows the predictions to be
used in an unmodified form. The linear-combination climate-recruitment relationship allows
the model to decide how much credence to give the predictions, when you estimate the
parameter p (which must be between O and 1, otherwise you can potentially get negative
recruitments).

exponential: CR(T)=aexp(BT)

arctan: CR

()
()
logistic: CR(T)=0{/(1+ﬁexp(,b’2T))
identity: CR(T)=T
linear-combination: CR(T)=pT +(1-p)

Note that this formulation allows various levels of relationship between recruitment and
climate. At one extreme, when CR(T) = 1, there is no relationship. At the other extreme, when
the YCS are constant and SR = 1, recruitment is completely determined by climate (apart from
the factor Ry). In between these extremes, climate affects recruitment but does not determine
it.

Warning: Since the climate-recruitment relationship was coded into CASAL, it has become
apparent that some aspects do not work as intended. The climate-recruitment option has been
marked obsolete and will not be usable until it is repaired in a future version.

As an option, you can use the initial recruitment R;,;;, (see Section 5.5) as the recruitment for
the first n,;y years of the model. So, for fish recruiting in years initial to
initial+nma—1, the RyxYCS term of the recruitment equation above is replaced by R,
(Or, if R;yiiq 1s defined as a deviate, by RyXR;,i.ii, S€€ Section 5.5.) This option is used to avoid
estimating year class strengths about which there is little information. If you use it, you don’t
need to provide the early year class strengths. Supply YCS starting from year (initial-
y_enter+n_rinitial).

It will usually be a good idea to provide a penalty function (see Section 6.7.6) to force the
YCSs to average 1. This ensures that the average recruitment for the years in which YCSs are
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estimated is close to Ry. Unfortunately, this penalty function may need to be large (i.e., have a
large weight), which can lead to poor MCMC performance in the calculation of a Bayesian
posterior. Because of that, CASAL supports two alternative parameterisations of YCSs.

The first of these alternatives (the Haist parameterisation) was suggested by V. Haist. Here,
the model parameter YCS is a vector Y, covering years from initial-
y_enter+n_rinitial to current-y_enter. The year class strengths are calculated
by YCS,=Y/mean(Y;) where the mean is calculated over the user-specified years
first_freeto last_free. Then,

Y, /mean,., (V,) li€ R]

YCS, = {

Y, ligR]
where R is the set of years from first_free to last_free. One effect of this
parameterisation is that R, is now defined to be the mean estimated recruitment over the years
first_free to last_free (because the mean YCS over these years will always be 1).
Often, the user will wish to force Yi=1 for i¢ R (this is equivalent to forcing R=R,) by
setting the lower and upper bounds to be 1. An exception to this might occur for the most
recent YCSs, which the user may want to estimate, but not include in the definition of R,
(because the estimates are based on too few data).

The advantage of the Haist parameterisation is that the user need no longer use a large penalty
to force the mean of the YCS parameter to be 1 (though they should still use a small penalty to
stop the mean of Y from drifting). This may improve MCMC performance. Simulated and
projected YCS are not affected by this feature, nor are those YCS that are set to R A
disadvantage with this parameterisation in a Bayesian analysis is that the prior refers to the
Y’s, not the YCS.

The second alternative is the Francis parameterisation of YCS. This uses two distinct concepts
of mean recruitment: R, is the theoretical mean recruitment over all years (past and future),
and, as in the Haist parameterisation, R, is the mean over the user-specified years
first_freeto last_free. There are two corresponding biomasses: B, is the biomass
that would exist if recruitment was always equal to R,.., and there was no fishing, and B is
the analogous SSB with constant recruitment R,. With this parameterisation, R, is used in
place of Ry in the calculation of R,, so

R =R, XYCS x SR(SSB

mean y—y_enter

v )XCR(T )

The user may also force the recruitment to be equal to R, for years at the beginning and end of
the period initial-y_enter+n_rinitial to current-y_enter (i.e., YCS=1).
This can be achieved by only providing YCSs for a subset of this period (and not, as in the
Haist parameterisation, by setting the lower and upper bounds to be 1). CASAL will set the
recruitment equal to R, for all years from initial-y_enter+n_rinitial to the year
before YCS_years, and also for any years after YCS_years and up to and including

current-y_enter. For these years, CASAL replaces YCS,_..., in the above equation by
Y , which is the mean YCS calculated over the years first_free to last_free.

With this parameterisation, R, (and thus By) become derived parameters, which are calculated

from the user-specified R,ucan (O Biuean) Using the equation Ry=R,....Y . See Figure 1 for an
illustration this parameterisation. Note that the only use of R, in CASAL is to calculate Ry
and R,. Also, the “special roles” of B, (see above) are unchanged by the Francis
parameterisation.
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A initial-y_enter }Ri:Rinitial
& initial-y_enter+n_rinitial } R=R,
A YCS_vear[1]
Y } R=free parameter
first_year
Time period Mean(R)=R,
last_year
R=f t
\ A vCs_year [n] } —=free parameter
ry current-y_enter } R=R,

Figure 1: How CASAL determines recruitments (R;) (before applying of the stock-recruit
relationship) for the Francis parameterisation.

Two advantages of the Francis parameterisation are that there is no need for a penalty
function to constrain the YCSs, and the prior distributions specified for parameter YCS do
apply to the YCSs (not true for the Haist parameterisation). A disadvantage is the need for the
additional parameter R,,.,. With likelihood estimation, this parameter is not well determined,
because if we double R,.., and halve all the YCSs we do not affect either the biomass
trajectory or the fit to any observations. This will not be a problem with Bayesian estimation
unless the priors on R, and the YCSs are both uniform (not recommended). Because the
estimated value of R, depends on these priors it seems best to treat this parameter, and the
associated B,.q,, as nuisance parameters with little biological meaning.

Incidentally, the output documentation (Section 7.2) refers to ‘true_YCS’, which are
defined as the YCSXCRxSR part of the recruitment equation. These are more informative than
the YCS alone, when there is a climate-recruitment or stock-recruitment relationship — let
alone the Y’s.

So, to specify the recruitment for each stock, you need to tell CASAL the following:

1. YCS, starting from year (initial-YesetMiniia) and extending up to year
(current—Y..,). With the Francis parameterisation you may provide YCS for a
consecutive subset of these years (and probably should if you want these set equal to
Ry).

2. The value of yu,

3. The stock-recruitment function (if any) and the steepness parameter.

4. The climate-recruitment function (if any) and the values of the climate-recruitment
parameters.

5. In asexed model, the proportion of recruits which are male.

6. In a size-based model, the mean and c.v. of the size distribution of recruiting fish
(which can depend on fish sex).
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7. In a growth-path model, the proportion of recruiting fish on each growth-path.

8. If Riua 1s to be used as the recruitment for the first n,,,;;,; years of the model, the
value of Nyinitial-

9. If you want to use the Haist or Francis parameterisations of year class strengths, you
need to say so, and specify the range of free YCS.

5.4.3 Maturation

Maturation is the process in which immature fish become mature and are moved accordingly
in the partition. See Section 5.11 for how to treat maturity when it is not a character in the
partition.

You can specify a single maturation episode in each year, or you can have multiple
maturations. Each episode can apply to one stock, or all stocks equally, and can be applied in
one area, or all areas equally. Maturation rates are expressed as an ogive (and note that this
ogive contains the rates of maturation, not the proportions of mature fish).

If you try to mature fish in an area where fish are constrained to be immature, CASAL will
issue a warning, and will not mature those fish.

So, to specify each maturation episode, you need to specify the following:

e [f it applies to only one stock, which is it?
e [f it applies to only one area, which is it?
e The maturation rates, as an ogive, optionally by sex.

5.4.4 Migration

Migration is the process of moving fish from one area to another. It only occurs in multi-area
models. You can specify any number of migrations occurring in each year. If two or more
migrations are specified in the same time step then they take place in the order in which they
are given.

A migration can involve only one stock in an area, or all stocks. You can migrate immature
fish only, or mature fish only, or both. You can state that a given proportion of these fish
migrate (constant across all age or size classes), or you can provide an ogive of proportions
migrating by age or size class.

You cannot migrate fish to an area where their combination of characters is not allowed
(CASAL errors out). So, for example, if you are moving fish to an area where only mature
fish are allowed, you need to specify that only mature fish migrate.

CASAL currently supports two-wave migrations. These migrations consist of two waves in
different time steps. If p; is the specified proportion of fish migrating from the ith partition
element, proportion (pwave p;) will migrate in wave 1 and proportion
(1-pwave)xp/(1-(pwave x p;)) will migrate in wave 2. Specify these as two separate
migrations, give pwave for each, and specify that the first is a ‘1* wave’ and that the second
is a 2" wave’. (No checking is currently carried out that there are two matching waves with
the same parameters. Remember that you should specify pwave for each, not pwave for the
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first and (1-pwave) for the second. If you want to estimate pwave, you need to set the
estimate.same parameter to make sure that pwave takes the same value for both waves.)

CASAL also supports annual variation in migrations and density-dependent migrations. The
annual variation allows the migration rate to be modified in a particular year by some factor
F. For density dependent migrations, the rate depends on the fish abundance in the source
area, the destination area, or both — so, you can encourage fish to move into an under
populated area and/or out of an overpopulated area.

Both annual variation or density dependent migration rates are calculated via an odds ratio,
and a single factor (F) is applied to all fish in a given migration in a given year, regardless of

age, sex, etc. Now let P!, (y) be the proportion of fish in element i of the partition which

migrate from area a to area b in year y, prior to the application of an annual variation or
density dependence. (These values depend on the migration rate, or ogive of migration rates,
etc.) And let the corresponding odds be

Pj,b()’)
1-P

a',b(y).

Then the effect of the annual variation or density dependence is to change the odds to

Oi,b(y):

3, (7)=0,,(Y)XF,, (¥)

and hence the proportion of fish migrating to

i ( ) 79;,1;()’)

TS, ()

For density dependent migrations, the factor F is calculated as follows. In each year y, for
each density dependent migration from area a to area b

A ,—A A _A
F,,(y)=exp —S[“A—“’OJ_D(M}

a,0 Ab,()

where S is a number expressing the dependence on the abundance in the source area (negative
values mean that fish are encouraged to leave an overpopulated area. Set $S=0 for no
dependence); D is a number expressing the dependence on the abundance in the destination
area (positive values mean that fish are encouraged to move to an under populated area — set
D=0 for no dependence); A;, is the total abundance of all fish in area j, year y (with y=0
meaning the unfished equilibrium level) just before the migration occurs.

Neither annual variations or density dependence are applied during the calculation of the
initial state.

The specification of the annual cycle includes the time step, source area, and destination area
of each migration. You also need to tell CASAL the following:

e [f there are multiple stocks and only one stock migrates, which is it?

¢ Do only mature fish migrate, or immature fish, or both?

e [If a proportion of these fish migrate (constant across age or size classes), what is it?
Or, if fish migrate according to an ogive across age or size classes, what is it?
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e [s density dependence applied? If so, what are the values of the density dependence
parameters S and D?

e Is an annual variation applied? If so, what are the years
(annual_variation_years) and values (annual_variation_values) of
the annual variation.?

Two-wave migrations require more details — see earlier.

5.4.5 Growth (in a size-based model)

In a size-based model, growth is the process by which fish move between size classes in the
partition. See Section 5.8 for the treatment of fish growth in an age-based model. You can
specify a single growth episode in each year, or you can have multiple growths. Each episode
can apply to one stock, or all stocks equally, and applies to all areas equally.

There are many possible fish growth increment models, but CASAL only implements the
Francis (Francis 1988) parameterisation of the growth increment von-Bertalanffy curve (see
Figure 2), and an alternative form that has an exponential decay. These are referred to as the
‘basic’ and the ‘exponential’ models respectively.
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Figure 2: Example of the ‘basic’ growth model (mean and 95% intervals), with parameters /=(30,
55), g=(11.91, 3.61), minsigma=4.45, and cv=0.31.

With the ‘basic’ model, we assume that the growth of fish in size class i is normally
distributed with mean

1=g,+(gp—8)ei~1) (lg~1,),
and standard deviation
0‘=max(c,u, Smin)’

where /; is the lower size bound of this size class and [.,.=0.5(];+1;,,).
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For the ‘exponential’ model we assume that the growth of fish in size class i is normally
distributed with mean

i1

i ‘e

g lp=l,
=38, [—ﬁJ :
8

and standard deviation

azmax(c/u’ Smin)’
where /; is the lower size bound of this size class and [.,=0.5(/;+;,,).

For both growth models, where i<j, the [i,j]th element of the transition matrix (which defines
what proportion of the ith size class move to the jth size class) is simply the integral of this
distribution between the bounds (/-l;) and (l;-l;). If there is a plus group, the
corresponding integrals extend to o. The [i,i]th element is the integral between the bounds —oo
and (/;;;—/.;). Note that growth models both require the same parameter names, but they have
different interpretations in each case.

So, you need to tell CASAL the following, for each growth episode:
1. If there are multiple stocks and only one stock grows, which is it?
2. The growth model to be used (either the ‘basic’ or ‘exponential’ models above).

3. The parameters of the growth model, with reference sizes [, and /g, the corresponding
parameters g, and gg, a ¢.v. ¢ and a minimum standard deviation s,,;,,. All of these may
also depend on sex and maturity.

5.4.6 Mortality (natural and fishing)

Mortality includes natural and fishing mortality — the processes by which fish are removed
from the partition. CASAL combines the two processes when they occur in the same time
step, hence they are discussed in a single section here.

Each time step can include a proportion of the year’s natural mortality and/or one or more
fisheries. Natural mortality is applied to all areas and can depend on sex, maturity, stock, and
age or size class. A fishery is defined as fishing mortality in a specified area and time step.
You need to supply a catch for each fishery in each year.

Natural mortality and fishing mortality occurring in the same area and time step can be
sequenced in two different ways. The first option, instantaneous mortality, is to apply half the
natural mortality, then to apply the mortalities from all the fisheries instantaneously, then to
apply the remaining half of the natural mortality. The second options is to use the Baranov
catch equation, which implies that natural and fishing mortalities are simultaneous. In general,
the first option is recommended because it requires much less computation. Note that the use
of the Baranov equation for multiple fisheries in the same area in the same time step has not
yet been implemented. Whichever option you use is applied to all fisheries.

With instantaneous mortality, the following equations are used.
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An exploitation rate (actually a proportion) is calculated for each fishery, as the catch
over the selected biomass,

C,
U, = — 7
) 8 gy exp(~0.5tM )
rows of the partition i,
age/size classes j

where, for element [i,j] of the partition, i indexes the rows of the partition for the area
in which fishery f operates, Sy; is the selectivity for fishery f; w; is the mean weight,

n; is the pre-mortality number of fish, M;; is the natural mortality, and ¢ is the
proportion of the year’s natural mortality in the time step.

The fishing pressure associated with fishery f is defined as the maximum proportion
of fish taken from any element of the partition in the area affected by fishery f,

> S,U

Uobs (f) =max,; fisheries k

i,j | in the same area
and time step
as fishery f

(Not, as in some other models, as the catch over the vulnerable biomass.)

There is a maximum fishing pressure limit of U,,.(f) for each fishery f. So, no more
than proportion U, (f) can be taken from any element of the partition affected by
fishery f in that time step. Clearly 0 < U,,,, < 1. It is an error if two fisheries sharing
the same area and time step do not have the same U,,,,.

For each f, if U,(N>Una(f), then U, is multiplied by U, ()/U,u(f). The fishing
pressures are recalculated, and stored if requested.

The partition is updated using

fisheries f

n; =n, exp(—tM,.j) [1_ Sﬁ:fo]

With Baranov mortality, the following equations are used:

1.

For each fishery, calculate the fishing mortality rate by solving the following Baranov
equation for F:

FS, _
C, =mws; (mwjnj (1-exp(~(m, +Ffsﬁ,.)))]

age/size classes j

where C; is the catch weight and F; the instantaneous fishing mortality rate for
fishery f. There is no closed form solution for F; given the other parameters, so this
equation must be solved iteratively for F.

The fishing pressure for fishery f is defined as the maximum instantaneous fishing

mortality rate for any element of the partition in the area affected by fishery f. Since
there can be no more than one fishery per area per time step, the fishing pressure is
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F,,(f)=F max,(S;)
There is a maximum fishing pressure limit of F,,,(f) for each fishery. So, F,,...(f) is the
maximum instantaneous fishing mortality rate on fish affected by the fishery.

For each f, if F,,(H)>Fuu(f), then Fy is reduced to F,.(f)/max;;(Ss). The fishing
pressures are recalculated, and stored if requested. (Note that F,,,(f) is the maximum
permissible value of FxSp; not of Fy. This is confusing, but is allowed so-as to
maintain compatibility with previous NIWA software. This is another reason why we
do not recommend the Baranov option for use in new models.)

3. The partition is updated using
m; =n eXp(_(lMij +F,Sy ))
where f'is the fishery affecting row i in the time period (if none, then F=0).

Your population.csl data file should contain a list of selectivities. Each fishery should
use one of these selectivities. More than one fishery can share the same selectivity. Also
fisheries can share selectivities with observations (for example, a CPUE index could use the
same selectivity as the corresponding fishery).

Note that if there are not enough fish to take the catch, CASAL simply reduces the actual
catch below the specified catch. If you are estimating parameters, a parameter set which leads
to fishing pressure limits being exceeded is not automatically disallowed. So your point
estimate may break fishing pressure limits. If you want to prevent this (as is generally the
case), you will need to add catch limit penalties in the estimation section (Section 6.7.6).

You can specify that observations occur partway through a mortality episode, or that SSBs are
calculated partway through mortality. Either way, CASAL needs a method of determining the
contents of the partition “after a given proportion p of the mortality”. There are two options:

1. Weighted sum: after proportion p of the episode, the partition elements are given by

nt =(1- p)ni}. + pn;.. Arguably this is the most natural approach if Baranov is not
used, although unless p=0, 0.5, or 1 it’s not logically consistent with the half-M,
fishing, half-M sequence used in the instantaneous mortality option.

2. Weighted product: after proportion p of the episode, the partition elements are given
by nf =n,.1j"’ n,.'j” . This is the most natural approach if Baranov is used, although it

might be desirable to use ‘weighted sum’ instead for consistency with analyses not
using Baranov.

When the Baranov equation is used, CASAL gives the user the option of specifying an F for
some years rather than a catch in tonnes. This is intended for modelling the early history of a
fishery, if catches were not recorded but the modeller has a vague idea about the level of
historical fishing pressure. Be clear that this F is an instantaneous mortality at a selectivity
of 1, and that individual partition elements may suffer more or less mortality, depending on
the selectivity.

Annual selectivity shifts are also provided for. These allow selectivities to shift to the left or
right with changes in an exogenous variable. (In the 2002 hoki assessment, this exogenous
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variable is either related to the depth being fished or the time of the fishing season, see
Francis et al. 2003.) The ogive is shifted by a, (E P E f ), where ay is a shift factor and Ejis

the exogenous variable. This is accomplished by changing the parameters of the ogive, for
example, in a logistic ogive, the as, parameter is shifted. Not all ogives support this feature
(see Section 5.6 for a complete list). For size-based ogives in an age-based model, the shift is
applied before the ogive is converted to age-based. Note that either a, and/or E; can be
estimated, although it may not be sensible to attempt to estimate both.

So, to specify the mortality processes, you need to tell CASAL the following:

The value of M, which may depend on sex, maturity, age and/or size.

The total catch for each fishery in each year.

Which selectivity is used by each fishery.

The maximum fishing pressure limit for each fishery, as U, for instantaneous

mortality or F,,,, for Baranov mortality.

e  Whether you want to use the ‘weighted sum’ or ‘weighted product’ approach to
calculate the contents of the partition partway through a mortality episode.

e Optionally if Baranov is used, the instantaneous mortality F' to be applied, by year,
for a range of years that does not overlap with the range of years for which catches
are provided.

e The details of each selectivity, which may include a exogenous shift variable £ and a

shift parameter a.

5.4.7 Disease mortality

Disease mortality is a special, additional, mortality that is implemented to occur after natural
and fishing mortality during a time step. This process removes fish from the partition, is
applied to all areas, and can depend on sex/age/size class. It can only occur during one time
step in the annual cycle.

The partition is updated using
m; =n, exp(—(tydeSU )) ’

where M, is an the disease mortality rate to apply, ¢ is an annual multiplicative scalar (and can
be used to index the years in which disease mortality is applied), and S is a selectivity to
apply to the disease mortality over the sex/age/size classes. As earlier, your
population.csl data file should contain a list of selectivities. The disease mortality
should use one of these selectivities.

5.4.8 Tag release events

Tag release events (also known as mark-recapture events or tag-release events) allow CASAL
to incorporate tagging data into the model. These occur as the last transition within a time step
during the annual cycle.

To allow tagging to be a part of the model, you must specify the number of tagging members
of the partition to create, and their names. CASAL always creates a “no_tag” member in
addition to those you have specified, and will use this as the source when moving fish into the
named tag partition member.
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In addition to creating tag members of the partition, you will need to initialise the values by
defining a tag-release event (otherwise they will always be zero). This process moves fish
from the “no_tag” member of the partition into a named member of the partition. You will
need to define how many fish to move, and the year, time step, area, and stock. Also, you may
need to define a penalty (see @fish_tagged_penalty) to discourage parameter values
which do not lead to enough fish being present in the population to allow for the number
being tagged (although in cases where only a small proportion of the population is tagged, this
is unlikely to be required).

The partition is then updated by moving N fish from the equivalent “no_tag” member of the
partition to the named tag member of the partition, where the numbers at age (in an age based
model) or numbers at size (in a size based model) are defined by a vector of proportions by
age and sex or size and sex respectively. Note that CASAL expects the vector of proportions
to sum to 1 over all ages (in an age based model) or sizes (in a size based model) and sex (in a
sex-based model).

CASAL allows two methods for determining the proportions at age of the tagged fish in an
age-based model, deterministic and free. In a size-based model, the only option is free.

For the deterministic method, let /; be the proportion of fish in size class i in the relevant part
of the partition (i.e., area, stock, tag event, etc.), where Zl,- =1. These are converted into

proportions-by-age a; by generating a conversion matrix M, where each row in M corresponds
to an age class and each column to a size class, and M;; is determined from the numbers of
fish in the relevant part of the partition and the current size-at-age distribution of these fish
(which may vary between partition rows), i.e.,

M, =N, Pr(x, =i)

where N; is the number of fish of age j, and Pr(x;=i) is the probability that the xth fish of age j
has size i. Then q; is,

M. L

_ J.iti
a;= 2 szJ
k

i

For an age-based model, in the free method, the proportions-at-age are simply parameters of
the model, which may either be estimated (from observations of proportions at size in an age-
based model) or fixed.

5.4.9 Tag shedding rate

The tag shedding rate transition process applies a tag shedding rate to each tag partition
member. Tag shedding transition processes can only be defined if tagging is in the model (see
Section 5.4.8).

The partition is updated by removing fish from each tag partition member, where the number
removed is defined by @tag_shedging rate and @tag_shedding props
commands.

Here, the number of fish in a tagged member of the partition i at time step j is n; The

partition is updated by applying the tag shedding rate for that tag member of the partition, /;,
by the proportion of tag shedding to apply in that time step 7, i.e.,
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n.=n, exp(—tjll. )

5.5 Setting the initial state

Before setting the initial state of the population you need to supply the equilibrium abundance
for each stock. Usually, this is done by specifying either B, (equilibrium SSB) or R,
(equilibrium constant recruitment level, as a number of fish). If you specify By it is used to
calculate R,, and conversely. Alternatively, if the Francis parameterisation of year-class
strengths is used you must supply either B,..., OF R,..an, rather than By or R,. If you specify
Biean 1t 1s used to calculate R,..,, and conversely; in either case, CASAL calculates R, from
R,.can (see Section 5.4.2).

CASAL has an alternative parameterisation of equilibrium abundance for use in two-stock
models only. You can specify R, or By as the sum over stocks (optionally on the log-scale)
and the proportion in each stock. An analogous option based on R, and B,,.., is available
for when the Francis parameterisation of year-class strengths is used.

CASAL offers the following three methods for setting the initial state of the population.
1. Use the equilibrium state based on constant recruitment Ry.

2. Allow the initial abundance to be different from the equilibrium abundance. You need
to supply an initial abundance B,y OF Ry fOr each stock as well as By or Ry (or, if
the Francis parameterisation is used, B Or Ryeq,). The equilibrium state is
calculated, then the numbers of fish of each stock s are multiplied by Biiiui(s)/Bo(s) if
you supplied Bj,iiai, OF bY Riniiai($)/Ro(s) if you supplied R;..;. There is also an option
for you to express R as a deviate, i.e., supply Ry relative to Ry, in which case
the numbers of fish of each stock s are multiplied by R;,;;u-

3. Allow the initial age or size distribution to be different from the equilibrium
distribution. (Using this option has approximately the same effect as starting the
model some years earlier and estimating the earliest year class strengths.) You need to
supply an initial number of fish Cj,, ; for each age or size class i of each stock. The
equilibrium state is calculated, then the numbers in each age or size class i are
multiplied by a factor such that they sum to the relevant C;,,, ;- (Alternatively, you
can specify C,,i.i; separately for males and females.) Then B, is calculated for each
stock by running the model forwards for one year, with constant recruitment at
equilibrium levels and no fishing, and recording the SSB. (The model is put back to
the initial state after doing this.) R, is calculated as (B;,i./Bo)xRy. The SSBs for all
years before the initial year are set to B,,;;.; (perhaps not ideal, but CASAL needs to
fill them in with something in case they are needed for the stock-recruitment
relationship or if you ask for them to be printed out).

The algorithm for determining the equilibrium state in a size-based model involves running
the model over a number of simulated years with constant recruitment. You need to tell it how
many years to use; this would usually be the approximate maximum age of the fish.
So, to specify the initial state of the population, you need to supply:

1. R, for each stock, or By for each stock (or, if the Francis parameterisation of year-

class strengths is used, Rycan OF Biuean). (For a two-stock model you can use the
alternative parameterisation above).
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2. In a size-based model, the number of years in the constant-recruitment simulations
used to determine the equilibrium state.

3. If you want the initial abundance to be able to differ from the equilibrium abundance,
then B, for each stock, or R;,,; for each stock (optionally, relative to Ry).

4. If you want the initial age or size distribution to be able to differ from the equilibrium
age or size distribution, then Ciytia, i (0T Cinisiai_ mate, i A04 Cinisiar_ femae, i) fOr €ach age or
size class i of each stock.

5.6 Applying ogives

An ogive is a function with a different value for each age or size class (i.e., for each column
of the partition). Ogives are used frequently throughout the CASAL population section: for
selectivity curves (Section 5.4.6), rates of migration (Section 5.4.4), and maturation rates
(Section 5.4.3).

Ogives have a number of different parametric forms in CASAL and you can use any of these
for any ogive parameter. Some common parameterisations are logistic, knife_edge,
double_normal, and the most flexible parameterisation allvalues where each ogive
element is specified separately. See Section 3.4 for instructions on specifying ogives in
CASAL. Note also that some ogive forms can be shifted (see Section 5.4.6).

An ogive may be defined to apply just to some subgroup of fish. For example, rates_male
logistic would be used to describe a logistic migration ogive for males, and
male_mature logistic would be used for a logistic selectivity ogive to be applied only
to mature males. See Sections 8.8, 8.9, and 8.12 for the permissible subgroup descriptors for
maturation, migration, and selectivity ogives, respectively. In the following examples we use
subgroup as a generic subgroup descriptor.

The usage of ogives depends on whether the model is age- or size-based. Ogives can be:
1. Age-based in an age-based model
The ogive is indexed by fish age, with indices from min_age to max_age.

For example, you might have an age-based selectivity that was logistic with 50%
mark at age 5 and 95% mark at age 7. This would be defined by subgroup
logistic, asp=5, a9s=(7-5)=2. Then the value of the ogive at age x=3 is

[ 119t e [ 1119092

2. Size-based in a size-based model

The ogive is indexed by fish size class, with indices from 1 to n_classes. The
value of the ogive for each size class is a function of the class midpoint. A plus size
group has no midpoint, of course, so if you have a plus size group you need to assign
it a nominal midpoint using the plus_group_size parameter (which is also used
to calculate mean weight for the plus group, see Section 5.9).

For example, you might have size classes of 30—40, 40-50, 50-60, 60-70, and 70+
cm, and want a size-based selectivity that was logistic with 50% mark at 55 cm and
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95% mark at 75 cm. This would be defined by subgroup logistic, as=55,
a195=(75-55)=20. Then the value of the ogive for the second size class

i 1/[1+1959).

3. Size-based in an age-based model

This allows you to add size-based model features to your age-based model, for
example a size-based selectivity. The value of the ogive for each element of the
partition is the integral of the size-based ogive over the distribution of fish sizes
(which depends on age, and potentially on the other partition characters, the year, and
the time step, see Section 5.8).

For example, you might have a size-based selectivity that was logistic with 50% mark
at 55 cm and 95% mark at 75 cm. This would be defined by subgroup
size_based logistic, as;=55, d,95=(75-55)=20. Suppose the partition is
divided by maturity, sex, and age, and that 3-year-old mature male fish in time step 2
have a mean size of 62 cm, and a normal size distribution with a c.v. of 0.2. Then the
value of the ogive, for 3-year-old mature male fish in time step 2, is

jL(x)s(x) dx,
where L(x) is the logistic ogive= 1/ [1 +1955/ 20] ,

and s(x) is the probability density function of the fish sizes,

1 x—62 Y
- exp| 05 .
- \/27:(62-0.2)CXP[ (62-0.2”

CASAL calculates the above integral by a discrete approximation. It takes 7gum
evenly spaced quantiles of the specified fish size distribution (defined as the quantiles
of ((1...74uan)—0.5)/nguan), evaluates the ogive at each, and calculates the average of
the ogive values. By default n,,,,=5. This default will generally be adequate, unless
your size-based ogives are very steep (e.g., knife-edge), in this case you may find that
the resulting age-based ogives are quite discretised. Fix this problem by increasing the
value of n,.,. Note that decreasing ng,.,, to 1 effectively bases the ogive on the mean
size at age, and ignores the distribution of sizes at age (and reduces the computational
cost considerably).

Note that the use of ng,., does not effect other uses of variation of size at age in the
model, i.e., age/size observations (Section 5.8) or mean weight at size (Section 5.9).

Not all types of ogives can be used as size-based ogives in an age-based model. The
permitted types are specified below.

So far, the use of size-based ogives in an age-based model where size-at-age varies
from year to year is only implemented for selectivities — not proportions maturing,
migration rates, etc. (Whereas if size-at-age does not vary between years, then you
can use size-based versions of any kind of ogive.)

Note that the function values for some choices of parameters for some ogives can result in an
computer numeric overflow error (i.e., the number calculated from parameter values is either
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too large or too small to be represented in computer memory). CASAL implements range
checks on some parameters to test for a possible numeric overflow error before attempting to
calculate function values. For example, the logistic ogive is implemented such that if (aso-
x)la,, 95 > 5) then the value of the ogive at x is zero, i.e., for asy=5, a,, 9s=0.1, then the value of
the ogive at x=1, without range checking would be 7.1x10%. With range checking, that value
is 0 (as (aso-x)/a,, 9s=40 > 5).

5.7 Ogives descriptions

The available ogives are described below. Table 2 summarises the available ogives and
examples of the shapes for each ogive are given in Figure 3.

constant
f(x)=C

The constant ogive has the estimable parameter C. This ogive can be shifted (trivially),
and can be used as a size-based ogive in an age-based model.

knife_edge

F(x) =0, (x<E
=1, (xZE)

The knife_edge ogive has the non-estimable parameter E, and cannot be shifted. (It
might seem straightforward to shift a knife_edge ogive, just by changing E, however
this cannot work in a gradient-based minimiser, as the test of (x < E) is not differentiable).
The knife_edge ogive can be used as a size-based ogive in an age-based model.

allvalues
f(x)=V,

The allvalues ogive has estimable parameters Vi, Vipw+s ... Vign Here, you need to
provide an ogive value for each age or size class. The allvalues ogive cannot be
shifted and cannot be used as a size-based ogive in an age-based model.

allvalues_bounded

f(x) =0, (x<L)
=V, (L<x<H)
=V,, (x>H) @motf(x)=1)

The allvalues_bounded ogive has non-estimable parameters L and H. The estimable
parameters are V; V;,; ... Vy. Here, you need to provide an ogive value for each age or
size class. The allvalues_bounded ogive cannot be shifted and cannot be used as a
size-based ogive in an age-based model.
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logistic
f(x)= 1/[1 g |

The logistic ogive has estimable parameters asy and a,,9s. The 1ogistic ogive takes
values 0.5 at x=as, and 0.95 at x=as¢+a,,0s. It can be shifted and can be used as a size-
based ogive in an age-based model.

logistic_capped
f ()C) — amax/|:l+19(aso_)‘)/am95:|

The logistic_capped ogive has estimable parameters dsp, d95, and dp..,. When
amax=1, it is identical to the 1ogistic ogive, and otherwise follows a logistic form with
values 0.5%am.x at x=asy and 0.95%a,x at x=asp+a,es. The logistic_capped ogive
can be shifted and can be used as a size-based ogive in an age-based model.

logistic_bounded

f(x) =0, (x<a50—a,095)

=1, (x > Asy + Q95 )

= 1/[1 19(s0™ ) deos ], otherwise

The logistic_bounded ogive is included to allow CASAL to replicate the ogives in
previous NIWA software (pmod). It has estimable parameters as, and a,9s. The
logistic_bounded ogive can be shifted and can be used as a size-based ogive in an
age-based model.

double_logistic

min (amax/|:1 4190 uss ]’ amax/[l + 19(X—(a50 +bs0))/Bioos })

f(x) =
[,

The double_logistic ogive has estimable parameters dsy, @95, P50, Droos, and dmax,-
The ogive is evaluated as the minimum of a logistic increasing curve (defined by as, and
a,95) and a logistic decreasing curve (defined by aso+bsg and b,,95). The maximum occurs
at the intercept of the two logistics, and has value a,,,x. The double_logistic ogive
can be shifted and can be used as a size-based ogive in an age-based model.

logistic_product

amax/([l + 19((150 —x)/ @595 :||:1 + 19(x—(a50 +b50)), s :|)
max (1/(|:1 + 19(1150*)()/&1095 :I |:1 + 19(xf(a50+b50))/bm95 :|))

The logistic_product ogive has estimable parameters dso, s, D50, Dioos, and dmax,-
The ogive is the product of two logistic ogives, where the first is increasing (defined by asg

f(x)=

46



The population section: Ogives descriptions

and a,9s) and the second decreasing (defined by asp+bsy and b,os). The
logistic_product has maximum value of a,,,, at the function maximum. This value
is determined by approximation, and is defined as the maximum value of the 100 step
sequence between asy-dgs and asy+bso+b,,9s. This approximation should usually be accurate
to within 0.1%. The logistic_product ogive can be shifted and can be used as a
size-based ogive in an age-based model.

Richards

f(X)=(1/[1+19<“*>/ﬂ]);

where ﬁ = Q1595 log(19) _
log(2° _1)—10g((%) _1)
log(2° -1
and @ = ay, +m
log(19)

The Richards ogive has estimable parameters asy, 95, and an asymmetry parameter 9.
When =1, it is identical to the Logistic ogive. The Richards ogive takes values 0.5
at x=aso and 0.95 at x=as¢+a,.9s. It can be shifted and can be used as a size-based ogive in
an age-based model.

Richards_capped

f(x)=a,, (1/[1 41908 ]);

where ﬁ = Q1595 log(19) _
o 112
log(2° -1
and & =ay, +m
log(19)

The Richards ogive has estimable parameters asy, d,¢s, asymmetry parameter J, and
a.q.. When 0=1, it is identical to the 1ogistic_capped ogive, and otherwise follows a
Richards form with values 0.5%an., at x=asy and 0.95Xam.x at x=aso+d,gs. It can be
shifted and can be used as a size-based ogive in an age-based model.

double_normal

flr)=2 e (xga)

= teals ] (x>a)

The double_normal ogive has estimable parameters a;, s;, and sg. It has values 1 at

x=a,, and 0.5 at x=a,—s; or x=a,+sg. The double_normal ogive can be shifted and can
be used as a size-based ogive in an age-based model.
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double_normal_capped

=g xolalsl (x>a,)

The double_normal_capped ogive has estimable parameters a;, Sy, Sg, and dpax.
When a,x=1, it is identical to the double_normal ogive, and otherwise follows a
double normal form with values an.. at x=a;, and 0.5Xa,.x at x=a;—s; or x=a;+sg. The
double_normal_capped ogive can be shifted and can be used as a size-based ogive
in an age-based model.

double_normal_plateau

F)=an 20T (esa)

(a,<x<a,+a,)

max ’

. 2*[("*(“1 +a, ))/SR:IZ

max 4 (x > al + a2 )

The double_normal_plateau ogive has estimable parameters a,, a, S;, Sg, and dpax.
When a,,x=1 and a,=0, it is identical to the double_normal ogive, and otherwise
follows a double normal form with values . at a;,< x < a;+a,, and 0.5%a.« at x= a;—sy,
or x=a,+a,+sg. The double_normal_plateau ogive can be shifted and can be used
as a size-based ogive in an age-based model.

double normal coleraine

f(x) =exp|~(¥=a)' /o7 |, (x<a)
—exp|~(x-a) for |, (x>a)

The double_normal_coleraine ogive has estimable parameters a, O'LZ, and aRZ.
This ogive can be shifted and can be used as a size-based ogive in an age-based model. It
is designed to replicate the double normal ogive implemented in the Coleraine stock
assessment model software (see Hilborn et al. 2001 for detail).

logistic_producing

A

(x<L)
=A(L), (x=L)
=(A(x)-A(x-1))/(1-A(x-1)), (L<x<H)
=1, (x=H)

where A(x)= 1/[1 +19as0=)/ s ]

The logistic_producing ogive has the non-estimable parameters L and H, and has
estimable parameters asy and a,9s. The 1logistic_producing ogive cannot be shifted
and cannot be used as a size-based ogive in an age-based model. For maturation ogives,
fix) represents the proportion maturing, not the proportion mature. If a
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logistic_producing maturation ogive is specified then (in the absence of other
influences) the proportion mature will follow a logistic curve with parameters asg, @;os.

increasing

f(x)=0, (x<L)
f(x=1)+xz (1= f(x=1)), (L<x<H)
f(H),

x
(H) (x>H) (note: not 1)

The increasing ogive has non-estimable parameters L and H. The estimable
parameters are 7, 7. .; ... Ty (but if these are estimated, they should always be constrained
to be between 0 and 1). The increasing ogive cannot be shifted and cannot be used as
a size-based ogive in an age-based model. Note that the increasing ogive is similar to
the allvalues_bounded ogive, but is constrained to be non-decreasing.

increasing_capped

f(x)=0, (x<L)
=f(x-1)+7z (C-f(x-1)), (LSx<H)
=f(0), (x>H)

The increasing_capped ogive has non-estimable parameters L, H, and C. The
estimable parameters are 7, @ ... my_;. Note that the maximum is zy_;, not 7y as for the
increasing ogive. As for the increasing ogive, if these are estimated then they
should always be constrained to be between 0 and 1. The increasing_capped ogive
cannot be shifted and cannot be used as a size-based ogive in an age-based model. Note
that the increasing_capped ogive is similar to both the increasing ogive, but is
constrained to be non-decreasing up to a specified cap.

Hillary
f(x)=0, (x<a)
:(x_a)y{u(x_a)z}y’(pa)

27y y

The Hillary ogive (Payne et al. 2005) has estimable parameters a, , and y. It has
values O at x < a, 1.0 at X = a + y, and a right-hand limb decay rate y. The Hillary ogive
can be shifted and can be used as a size-based ogive in an age-based model.

Hillary_ capped

f(x)=0, (x<a)

-2y (x-a))
=a,, Ty {1+ " J J(x>a)
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The Hillary_capped ogive has estimable parameters a, v, y, and dy.x. When gy, =1
it is identical to the Hillary ogive, and otherwise follows a Hillary form with values
0 at X < a, amx at X = a + , and a right-hand limb decay rate y. The Hillary_capped
ogive can be shifted and can be used as a size-based ogive in an age-based model.

Table 2: Summary of the ogives available in CASAL, their parameters, and if they can be shifted
or used as a length-based ogive in an age based model.

Ogive

Parameters

Non-estimable

constant

knife_edge E
allvalues
allvalues_bounded LH
logistic

logistic_capped
logistic_bounded
double_logistic
logistic_product

Richards

Richards_capped
double_normal
double_normal_capped
double_normal_plateau
double_normal_coleraine

logistic_producing LH
increasing LH
increasing_capped LHC
Hillary

Hillary_capped

50

Estimable
C

V[ow Vluw+1 aee Vhigh
VL VL+] “ee VH

aso A1095

asp A1p95 Amax

aso 1095

aso Q1095 bso Dioos Amax
aso Q1095 5o Droos Amax
sy Ayp05 0

@50 Q195 O Umax

ay SL SR

ay Sp, SR Amax

ay dy Sp, SR Amax
a, oL Ogr

aso Aio9s

Ty W47 --- Ty

T Tpsg -+ TH-]
ayy

QY'Y Amax

Shift?

Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Length-
based?

Yes
Yes
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Function value

Function value

Function value

Function value

Function value

0.8 1

(a) Constant (b) Knife-edge (c) Alivalues (d) Allvalues-bounded
1.0 1 1.0 1 1.0 1
C=1 E=8 V=(0, 0, ... 0.8, .8)
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Age Age Age
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ato95=4 ato95=4 ato95=4
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al=10 al=10 ab0=10
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aR=8amax=0.7 084 al=4 08 08 L=7
aR=8 R=12
® amax=0 ° ®
§U.6‘ ED.S' §U.6‘
g g §
uS.UA‘ u§.0.4' uS.UA‘
0.2 1 021 0.2 1
T T T T T 0.0 T T T T T 0.0 0.0 T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 0 5 10 15 20 25
Age
(r) Increasing-capped (s) Hillary
1.0 1 1.0
0.8 1 0.8 1
g B 0 3 g
E o6 1 const=0.8 S 61 E
2 pi=(0.001, ...0.7) | £ S
Z 0.4 £ 0.4 Z
0.2 1 021
0.0 T T T 0.0
0 15 20 25 30 0
Age

Figure 3: Examples of the ogives available in CASAL.
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5.8 Calculation of size-at-age (in an age-based model)

In an age-based model, fish size does not feature in the partition, but size-at-age is still an
element of the model. See Section 5.4.5 for a discussion of fish growth in a size-based model.

Size-at-age is based on a growth curve which specifies the mean size at a given age. There are
two alternative growth curves in CASAL:

1. von Bertalanffy, where size at age is defined as, s (age) =L, (1 —exp(—k(age—t, )))

2. Schnute, where size at age is defined as,

b
1- -7

V(0 -) exp(~a (age_ ) ifa#0,b#0

1= exp( a(z, Tl))

1—exp(—a(age—1,) ‘

yexp| In yz/)’1 1— exp((—a(r —Z'))) ifa#0,b=0

5 (age) = N 21
[ )age Tl} ifa=0,b%0

1
2 eXp{ln(yg/ yl)age__;} ifa=0,b=0
2 1

The von Bertalanffy curve is parameterised by L k, and t,; the Schnute curve (Schnute
1981) by y; and y,, which are the mean sizes at reference ages 1, and 1,, and @ and b (when
b=1, this reduces to the von Bertalanffy with k=a). All these parameters can depend on sex,
stock, and/or growth-path. (But note, all the parameters should depend on the same thing. You
can’t supply L;,r by sex and k for both sexes combined.)

The model can incorporate changes in size-at-age during the year — i.e., growth between fish
birthdays — by incrementing age as specified by the annual_cycle.growth_props
parameter (see Section 5.3).

Optionally, if tagging is a part of the partition and the growth curve is von Bertalanffy, you
can specify a growth loss period for tagged fish in each tag partition member. Here, for each
tag partition member i, the period of “no growth” is specified by the parameter g;, where
8no_tag = 0, 1.€., the size at age is defined as,

5 (age) = L (1-exp(k(age 1, )

Note that this is not an ideal solution to inclusion of the effect of a tagging event on mean
growth within the model, particularly if the model contains data about recaptures at size
during the period of the “no growth” period.

Optionally, you can give CASAL mean-size-at-age data which it can use instead of a growth
curve. For one or more years, you provide the mean size at each age. These data should apply
to a single time step, which you must specify (using @size_at_age_step). For example,
you might provide mean size data for 1991, 1992, 1994 and 1997 which are accurate for time
step 2. If fish growth occurs between birthdays (i.e., some element of growth_props is
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nonzero), then CASAL uses interpolation to fill in mean fish sizes in other time steps
(described below, but see Section 5.8.1 for details of the method of calculation).

Note that these mean-size-at-age data are not treated like observations, which CASAL
attempts to match as closely as possible; rather, CASAL uses the exact figures given.

CASAL can potentially use mean fish size data from any or all years in the range initial to
final. Use @size_at_age_years to specify which years you will provide these data for.

If data are not provided for a particular year, then CASAL needs to fill in the missing values.
This can happen in several situations:

1. Aninternal gap. Data are provided for at least one year after that year, and for at least
one year before that year (e.g., if data are provided for 1992, 1993, 1995, and 1996,
then 1994 is an internal gap)

2. An external gap. Either there are no data for years after that year, or no data for years
before that year (in the above example, 1991 and 1997 are external gaps)

3. While calculating a deterministic or stochastic equilibrium, i.e., during MCY/CAY
yield calculations, or when calculating the initial state of the partition in year initial.
In this case the data is never provided and is always filled in with the mean of the
values provided.

There are two possible options for filling in the missing values. The first is to use the mean of
the values provided. The second is to use interpolation: an internal gap is filled in using
interpolation from the two provided years which bracket it, or an external gap is filled in with
the values from the closest provided year. The option used is determined by the user through
the Rsize_at_age_miss command,

@size_at_age_miss Internal gaps  External gaps

mean (the default) use the mean  use the mean
interp interpolate use the closest year
interp.mean interpolate use the mean
mean.interp use the mean  use the closest year

You can provide mean size-at-age data for the projection period (see Section 7.3). And, in
some circumstances you may want to provide mean fish size data for year current+1, even
if you are doing model runs without projections. The reason is that CASAL needs mean sizes
for year current+1 in order to calculate (by interpolation) mean sizes for those time steps
(if there are any) in year current which are after the time step at which your sizes are valid.
However, you do not need to provide data for year current+1, and it is unlikely to make a
substantial difference if you don’t.

If you are unsure if CASAL is calculating mean sizes appropriately from the data provided,
then the best thing to do is to request the mean-sizes-at-age be printed for each time step in
each year. You can do this by setting the @print.every_mean_size to True in the
output.csl parameter file. Note that you may also need to set
@print.population_section to True as well.

Optionally, you can specify distributions of sizes at age, as well as the mean size at age. These
size distributions are used to fit size frequency and age/size observations (Section 6.6), to
calculate mean-weights-at-age (Section 5.9), and to convert size-based ogives to age-based
(Section 5.6). Two distributional forms are implemented, normal and lognormal. In either
case you need to give the c.v. of size-at-age, which can depend on sex, stock, and growth-path
— but not on age.
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If you use a growth curve, then as an optional feature, CASAL allows you to model annual
growth variation. There is an annual growth variable for each year, indicating “how many
average years growth” fish achieve in that year. The mean size of a fish of age a in year y is
then given by fle,,), where fis the growth curve, e,, the ‘effective’ age, given by

— nylaged
e = I
ay y_a+1aged !

where /,..,=1 if fish have been aged yet in the year or O else, and the r; are annual growth
variables (in year y all fish grow as much as they would in r, years of average growth). If
within-year growth is included in the model, and proportion p of annual growth has occurred
by a given time step, then the effective age at that time step is e, +pry 4 1 aea. Be careful to
avoid off-by-one errors when you specify the r;. They can cover any range of consecutive
years. (Note that different annual growth variables for different stocks is not implemented.) If
you use this feature, you can only use size-based ogives for selectivity, not for any other
model feature such as migration rates.

So, to specify size at age, you need to tell CASAL the following:

1. Which growth curve is to be used — Schnute or von Bertalanffy. The parameters of
the growth curve (which can depend on sex, stock, growth-path).

2. Alternatively, mean-size-at-age data for one or more years.

3. Whether size distributions around the mean are to be used. If so, with what
distribution, and what c.v. (which again can depend on sex, stock, growth-path).

4. If annual growth variation is used, the growth variable for each year.

Be careful about the scale of the parameters (i.e., L;, for von Bertalanffy growth) — this
should be in units compatible with the size-weight relationship (Section 5.9). For example, if
you provide your catch in tonnes and your size-weight relationship on a scale that converts a
length in centimetres to a weight in tonnes, then your growth curve should be specified in
centimetres.

5.8.1 Interpolation of size at age

This section details the equations used to calculate mean-size-at-age in an age-based model,
when mean size data are provided for one or more years. The objective is to determine M.,
the mean size of fish of age a in year y, time step s.

Let P, be an indicator which takes the value 1 if and only if mean size data are supplied for
year y. For years y with P=1, we have size-at-age values {V,,} for a=a...anu., (the range of
ages in the partition). We also have @annual_cycle.growth_props, indicating the
growth between fish birthdays: let g, be the entry of growth_props for time step s. Let  be
the time step to which the mean size data applies, and b the fish birthday, i.e., the time step in
which age incrementation is carried out.

The simplest case is when P,=1 and s=t, in which case M,,=V,,.
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Now let
Y=Y, s>t
=y-1, s<t
y2=yrt+l,
a, =a, ift<s<b,ors<b<t,orb<t<s,orb=t,ors=t
=a-1, otherwise, and
a,=a;+1

If P,;=P,,=1, then we use interpolation to fill in the mean sizes for this time step,

Mays = WIVal vl + W Va2y2

g.-g (a=a-1)

h =

} and w, =1-w,.

We need to modify these equations for boundary cases, but this is simply done. If a; > a,,,, or
y,> final, we subtract 1 from a,, a», y», wy; and if, in addition, y,—1>initial, we
subtract 1 from y;; and add 1 to w,. If a; < @i, Or yy < initial, we add 1 to ay, as, y1, ya,
and wy and subtract 1 from w,. Technically, what these modifications do is to change from an
interpolation to an extrapolation.

Now if Py;=0 and/or P,,=0, then we need to ‘fill in the blanks’ for the missing year(s) before
we carry out the interpolation. This can happen in ordinary model runs if the user has not
provided data for one or more years; also, it always happens if the model is being run to
stochastic or deterministic equilibrium (either to find the initial state of the model, or during
yield calculations).

There are two possible options at this stage. The first is to replace values for missing years
with the average over all years provided,

2.V,

y:Py =1
Va, avg— P
2P,

This option is always used when the model is being run to equilibrium. Also, it is used for
internal gaps (years y for which there is at least one u>y for which P,=1 and at least one /<y
for which P, =1) if the user has set @size_at_age_miss to either mean or
mean.interp, and for external gaps (years where the condition above does not hold) if the
user has set @size_at_age_miss to either mean or interp.mean.

The second option is to fill in missing years using interpolation. An internal gap is filled in
using interpolation from the two provided years bracketing it, if the user has set
@size_at_age_miss to either interp or interp.mean. Let u be the earliest year
after y for which P,=1 and [ be the latest year before y for which P, =1, then we interpolate
with
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Vy _ Val (I/l - y)+Vau (y _l)
v -1 ‘

An external gap is filled in with the values from the nearest year, if the user has set
@size_at_age_miss to interp or either mean.interp.

5.9 Calculation of mean weight

In size-based models, you need to provide CASAL with size-weight parameters a and b,
which can depend on sex and stock. It then calculates the mean weight for each size class as

mean weight=axsize”,

where size is approximated by (upper bound plus lower bound of size class)/2. If there is a
plus group, you need to specify a nominal mean size for it using the plus_group_size
parameter.

In age-based models, you again need to provide CASAL with size-weight parameters a and b,
which can depend on sex and stock. If you don’t specify a distribution for sizes-at age (see
Section 5.8), then the mean weight for a given partition element is calculated as,

mean weight=ax(mean size at age)b

where the mean size at age can depend on the other partition characters, the time step, and the
year (Section 5.8).

If you do specify a size distribution, then the mean weight at age is calculated over that
distribution, using the following formula, which is exact for lognormal distributions, and a
good approximation for a normal distribution (if the c.v. is not large),

b(b-1)
mean weight=ax(mean size at age)b X (1 + cvz) 2

where cv is the c.v. of sizes-at-age for that element of the partition.

Be careful about the scale of a — this is easily specified incorrectly. If you provide your catch
in tonnes, and your growth curve in centimetres, then a should be on the right scale to convert
a length in centimetres to a weight in tonnes. Within the fin fisheries at NIWA, a is more
often expressed on a scale to convert length in centimetres to weight in kilograms, and the
user needs to divide this figure by 1000. Also note that the command @size_weight has
the optional subcommand verify_size_weight that can be used to help check that the
units specified are plausible.

5.10 Weightless model (running CASAL as a nhumbers only model)

You may wish to use a model which does not involve fish weight at all, but models the
number of individuals instead (as can be the case in some shellfish models). For this type of
model, abundance and catch data need to refer to numbers of fish, not biomass. If this is the
case, set the @weightless_model switch to true (the default is false). The effect of
this command is to assume a size-weight relationship of w=lI, i.e., each fish is assumed to
have a nominal ‘weight’ of 1 tonne, irrespective of size. Note that CASAL will still label
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catches and abundances as if they were biomass (e.g., CASAL will report SSBs) but in each
case, these values can be read directly as numbers of individuals.

Note that if @weightless_model true, then specifying any size-weight parameters in
the population.csl file will generate an error.

5.11 Maturity, in models without maturity in the partition

When maturity is not a character in the partition, processes may still depend on maturity. You
must then make the assumption that the proportion of mature fish in each element of the
partition remains constant over time. You need to provide CASAL the proportion of mature
fish in each size or age class, which can depend on sex (but not on stock). (Also, note that you
are providing the proportion of mature fish, not the proportion of maturing fish as in Section
5.4.3).

Once you have done this, you can calculate SSB as a mature biomass (Section 5.3) and
calculate fits to observations which relate to maturity (Section 6.6).

You can also have migrations which move only immature or only mature fish. If you migrate
fish on the basis of maturity when maturity is not a partition character, be aware that the
model does not know that the arriving fish are all mature, or all immature. So, if you migrate
only mature fish into the spawning area, you need to tell CASAL that the SSB includes all
fish in the relevant area — because it does not know that there are no immature fish present.
See the subcommand spawning_use_total_B (Section 8.2).

You may not want to include maturity in the model in any shape or form, but CASAL still
insists that you give it information on proportions mature. In this case, just set the proportion

of mature fish to 1 for all age/size classes, as follows,

@maturity_props
all constant 1

Then the SSB is simply the total biomass in the spawning area at the appropriate time.
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6. THE ESTIMATION SECTION
6.1 Role of the estimation section
The tasks carried out by the estimation section are:

1. Get the point estimate, i.e., the least-squares fit, maximum likelihood estimate
(MLE), or maximum posterior density estimate (MPD) (see Section 6.3).

2. Profile selected parameters, i.e., find, for each of a series of values of a parameter,
allowing all other free parameters to vary, the minimum value of the objective
function (Section 6.4). This is called either a likelihood or posterior profile (profiling
is not appropriate for weighted least-squares estimation).

3. For Bayesian estimation only, generate an MCMC sample from the posterior
distribution (Section 6.5).

4. For maximum likelihood or Bayesian estimation, calculate the approximate
covariance matrix of the parameters as the inverse of the minimiser’s approximation
to the Hessian, and the corresponding correlation matrix (Section 6.3).

A key decision is between least-squares, likelihood, and Bayesian estimation, which define
the objective function as a weighted sum of squares, negative log-likelihood, and negative
log-posterior respectively (Section 9.1).

6.2 Specifying the free parameters

You need to tell CASAL which of the estimable parameters are to be freed by using
@estimate commands (see Section 9). An @est imate command-block looks like this,

destimate

parameter initialization.BO
lower_bound 1000
upper_bound 100000

prior uniform

See Section 3.4 for instructions on how to generate the parameter name. You have to specify
at least one free parameter. You still provide values for the free parameters as normal, these
are used as the starting values for the minimiser (unless you provide alternative starting values
using casal —1i, see Section 3.1).

All parameters are estimated within bounds. For each free parameter (scalar, vector, or ogive),
you need to specify the bounds, and, in a Bayesian analysis, the prior (Section 6.7.5). Note
that the bounds and prior on an ogive refer to the ogive free parameters, not the actual values
of the ogive.

You need to estimate all the estimable parameters of an ogive if you estimate any, but you can
fix some of them if you want by setting the lower and upper bound equal. Similarly, if you
want to estimate only some elements of a vector, fix the others by setting the bounds equal.

Relativity constants g are a bit of a special case, because no starting value is provided in the
nuisance method (see Section 6.7.2) whereas all other free parameters always need starting
values. But you still need to provide an @estimate block for each ¢, containing the bounds
on the g, using the following format,
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@estimate

parameter g[label].qg
lower_bound le-6
upper_bound le-2

where label is the label of the g in the observations blocks. If you’re still uncertain how to
do this then look at the example in Section 14.

If you want to estimate two (scalar, vector, or ogive) parameters and to constrain them to be
the same, you need to use the same subcommand. This might arise if, for example, you
wanted to use the same migration ogive for two different migrations involving different
stocks. Only use one @estimate block, for one or other of the two parameters. Put in the
same command, using the name of the other parameter as the argument. For example,

@estimate
parameter growth[l].g
same growth[2].g

means that the g parameters for the first two growth episodes are both estimated, but
constrained to be equal. (Don’t put in a second @estimate block for growth[2] .g with
same growth[1].g.)

6.3 Point estimation

Point estimation is invoked with casal -e, and also used in several other tasks.
Mathematically, it is an attempt to find a minimum of the objective function. CASAL
approaches this optimisation problem using a quasi-Newton minimiser built into Betadiff,
which is a slightly modified implementation of the main algorithm of Dennis Jr. & Schnabel
(1996).

The minimiser has three kinds of (non-error) exit status:
1. Successful convergence (suggests you have found a local minimum, at least).

2. Failure to converge (you have not reached a local minimum, though you may deem
yourself to be ‘close enough’ at your own risk).

3. Convergence unclear (the minimiser has clunked to a halt. You may have found a
local minimum, although you should check by restarting the minimiser at the final
values of the free parameters).

You can choose the maximum number of quasi-Newton iterations and objective function
evaluations allotted to the minimiser. If it exceeds either limit, it exits with a convergence
failure. We urge you to use large numbers of evaluations and iterations (at least the defaults of
300 and 1000) unless you successfully reach convergence with less. You can also specify the
starting point of the minimiser using casal —1i.

We want to stress that this is a local optimisation algorithm trying to solve a global
optimisation problem. What this means is that, even if you get a ‘successful convergence’
message, your solution may be only a local minimum, not a global one. To diagnose this
problem, try doing multiple runs from different starting points and comparing the results, or
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(probably better) doing profiles of one or more key parameters and seeing if any of the
profiled estimates is actually better than the original point estimate. Otherwise you may have
reached a false (local) minimum.

The approximate covariance matrix of the free parameters can be calculated as the inverse of
the minimiser’s approximation to the Hessian, and the corresponding correlation matrix is
also calculated. These results are printed if you use the print.covariance parameter
(and, optionally, the eigen values of the Hessian, see Section 10.1). Be aware (i) that the
Hessian approximation develops over many minimiser steps, so if the minimiser has only run
for a small number of iterations the covariance matrix can be a very poor approximation, (ii)
in any case the inverse Hessian is not a good approximation to the covariance matrix of the
free parameters, and should not be used, for example, to construct confidence intervals. Also
note that if a free parameter has equal lower and upper bounds, it will have entries of ‘0’ in
the covariance matrix and ‘NaN’ in the correlation matrix.

Multi-phase estimation is allowed, and is implemented in a manner similar to that by AD-
Model Builder (Otter Research Limited 2000). In this case, some free parameters are initially
held fixed, and a minimisation is carried out. Next, some or all of the fixed parameters are
freed, and another minimisation is carried out, etc. Sensible starting values should be used for
the fixed parameters. Apparently this can be quicker and/or more effective than estimating all
the parameters in a single minimisation. (The main idea is that the ‘key’ parameters should be
freed first and the ‘nuisance’ parameters last, although there is little known about the actual
performance improvements that may be expected from this approach.) If this feature is used,
then each parameter should be allocated a ‘phase’; the default phase is 1. The phase 1
parameters are freed first, then the phase 2 parameters, etc. You can specify that a different
maximum number of iterations and/or evaluations is to be used for the ‘intermediate’ phases,
i.e., all but the last. It would probably be advisable to use rather less effort for the
intermediate phases than for the final phase.

An option (casal -E) is provided in which the point estimate is calculated using finite
difference gradients instead of automatic differentiation. This was implemented for three
reasons:

1. You can use finite differences to check your results if you suspect the automatic
differentiation is misbehaving.

2. If you become aware of problems in the automatic differentiation section of Betadiff
and can’t fix them, you will need to switch to finite differences.

3. You may find that finite differences is faster than automatic differentiation, with
comparable accuracy, for problems with small numbers of free parameters.
(Although, for large problems, ~100 free parameters, it can be many times slower.)

This option is implemented only for simple point estimation, and not for profiling or for the
initial point estimate in MCMC runs.

6.4 Likelihood or posterior profiles

If profiles are requested (casal —-p), CASAL will first calculate a point estimate, then, for
each scalar parameter to be profiled, fix its value at a sequence of n evenly spaced numbers
between specified bounds / and u, and calculate a point estimate at each value. By default
n=10, and (I, u)=(lower bound on parameter plus (range/(2n)), upper bound on parameter less
(range/(2n)). Each minimisation starts at the final parameter values from an adjacent value of
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the parameter being profiled. The program reports the objective function for each parameter
value, and all the parameter estimates. The initial point estimate is also inserted into the
profile (note that this serves as a check that none of the other points along the profile have a
better objective function value than the initial ‘minimum’).

You specify which parameters are to be profiled, and optionally #, /, and u values for each.
Only scalar parameters can be profiled.

You can also supply the initial point estimate using casal -1i, so that CASAL doesn’t need
to do the first minimisation. Be aware that you are supplying the point estimate, not the
minimiser starting point to get to the point estimate (as in other situations where casal -i
is used).

If you have specified multi-phase estimation (see Section 6.3), it is only used for the initial
point estimate. Subsequent minimisations are done single-phase, as they should start
reasonably close to the endpoint and so shouldn’t need multiple phases.

If you are doing a Bayesian analysis and want likelihood profiles rather than posterior
profiles, then either switch to the likelihood objective function (using @estimator
likelihood) for the duration or make all the priors uninformed.

If you get an implausible profile, it may be a result of not using enough iterations in the
minimiser. In this case, increase max_iters and/or max_evals and retry.

6.5 Bayesian estimation
CASAL can:

1. Use a Monte Carlo Markov Chain to generate a sample from the posterior distribution
of the free parameters (casal -m); and output the sampled values to a file,
(optionally only every nth set of values).

2. If the run is interrupted, recover the results from the file and continue the run from
where it left off, appending the results to the file (casal -a).

3. Combine the results of one or more chains into a single posterior sample by removing
samples from the ‘burn-in’ periods and concatenating the results; allow the user to
reduce the size of the resulting sample by sub-sampling; and optionally, apply prior
re-weighting in the sub-sampling process, i.e., apply probability weights to generate a
sample from a posterior based on a different prior (casal -C). The sub-sampling
may be either systematic (every nth point) or randomly (with replacement). The
former is recommended (to minimise autocorrelation) except with prior re-weighting,
when the latter must be used.

4. For a posterior sample, calculate the values of various output quantities at each
sample point and export these so that they can be plotted and/or summarised using an
external package (use casal -v).

Two major steps are best done by an external package, as CASAL has no post-processing
capabilities. CASAL cannot:

1. Produce MCMC convergence diagnostics (use a package such as BOA, see
http://www.public-health.uiowa.edu/boa).
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2. Plot/summarize the posterior distributions of the output quantities (use a general-
purpose statistical or spreadsheet package such as S/S-Plus/R or Microsoft Excel).

Bayesian methodology and MCMC are both large and complex topics, and we do not describe
either properly here. See Gelman et al. (1995) and Gilks et al. (1998) for details of both
Bayesian analysis and MCMC methods. In addition, see Punt & Hilborn (2001) for an
introduction to quantitative fish stock assessment using Bayesian methods.

This section only briefly describes the MCMC algorithms used in CASAL. See Section 3.2
for a better description of the sequence of CASAL commands used in a full Bayesian
analysis.

CASAL uses a straightforward implementation of the Metropolis algorithm (Gelman et al.
1995, Gilks et al. 1998). The Metropolis algorithm attempts to draw a sample from a Bayesian
posterior distribution, and calculates the posterior density 7, scaled by an unknown constant.
The algorithm generates a ‘chain’ or sequence of values. Typically the beginning of the chain
is discarded and every Nth element of the remainder is taken as the posterior sample. The
chain is produced by taking an initial point x, and repeatedly applying the following rule,
where x; is the current point:

1. Draw a candidate step s from a proposal distribution J, which should be
symmetric i.e., J(—s)=J(s).

2. Calculate r=min(z(x+s)/7(x;),1).
3. Let x;, ;/=xs+s with probability r, or x; with probability 1-r.

An initial point estimate is produced before the chain starts, which is done so as to calculate
the approximate covariance matrix of the free parameters (as the inverse Hessian), and may
also be used as the starting point of the chain.

The user can specify the starting point of the point estimate minimiser using casal -i.
Don’t start it too close to the actual estimate (either by using casal -1i, or by changing the
parameter values in population.csl) as it takes a few iterations to form a reasonable
approximation to the Hessian.

There are three options for the starting point of the Markov Chain:
1. Start from the point estimate.

2. Start from a random point near the point estimate (the point is generated from a
multivariate normal distribution, centred on the point estimate, with covariance equal
to the inverse Hessian times a user-specified constant). This is done to prevent the
chain from getting ‘stuck’ at the point estimate.)

3. Start from a point specified by the user with casal -1i.

The chain moves in natural space, i.e., no transformations are applied to the free parameters.
The default proposal distribution is a multivariate normal centred on the current point, with
covariance matrix equal to a matrix based on the approximate covariance produced by the
minimiser, times some stepsize factor. The following steps define the initial covariance
matrix of the proposal distribution:
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i.

The covariance matrix is taken as the inverse of the approximate Hessian from the
quasi-Newton minimiser.

The covariance matrix is modified so as to decrease all correlations greater than
max_cor down to max_cor, and similarly to increase all correlations less than
-max_cor up to -max_cor (the max_cor parameter defaults to 0.8). This should
help to avoid getting ‘stuck’ in a lower-dimensional subspace.

The covariance matrix is then modified either by,

adjustment_method=covariance: that if the variance of the ith
parameter is nonzero and less than min_diff times the difference between the
parameters’ lower and upper bound, then the variance is changed, without
changing the associated correlations, to k=min_diff (upper_bound;-

lower_bound,). This is done by setting Cov(i,j),=sqrt(k)Cov(i,j)/sd(i)

for i j,and var(i) =k.

adjustment_method=correlation: that if the variance of the ith
parameter is nonzero and less than min_diff times the difference between the
parameters’ lower and upper bound, then its variance is changed to
min_diff (upper_bound;-lower_bound,;). This differs from (i) above in
that the effect of this option is that it also modifies the resulting correlations
between the ith parameter and all other parameters.

This allows a free parameter to move in the MCMC even if its variance is very small
according to the inverse Hessian. In both cases, the min_diff parameter defaults
to 0.0001.

The stepsize (a scalar factor applied to the covariance matrix to improve the
acceptance probability) is chosen by the user. The default is 2.4 where d is the
number of free parameters, as recommended by Gelman et al. (1995), though
experience has shown that this is often too high, leading to a very low acceptance
rate.

The proposal distribution can also change adaptively during the chain, using two different
mechanisms. Both are offered as means of improving the convergence properties of the chain.
It is important to note that any adaptive behaviour must finish before the end of the burn-in
period, i.e., the proposal distribution must be finalised before the kept portion of the chain
starts (CASAL enforces this). The adaptive mechanisms are as follows:

1.

You can request that the step size change adaptively at one or more sample numbers.
At each adaptation, the step size is doubled if the acceptance rate since the last
adaptation is more than 0.5, or halved if the acceptance rate is less than 0.2. (See
Gelman et al. 1995 for justification.) The new step size is recorded in the
objectives file.

. You can request that the entire covariance matrix change adaptively at one or more

sample numbers. At each adaptation, it is replaced with a matrix based on the sample
covariance of an earlier section of the chain. The theory here is that the covariance of
a portion of chain could potentially be a better estimate of the covariance of the
posterior distribution than the inverse Hessian.
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The procedure used to choose the sample of points is as follows. First, all points on
the chain so far are taken. All points in an initial user-specified period are discarded.
The assumption is that the chain will have started moving during this period — if this
is incorrect and the chain has still not moved by the end of this period, it is a fatal
error and CASAL stops. The remaining set of points must contain at least some user-
specified number of transitions — if this is incorrect and the chain has not moved this
often, it is again a fatal error. If this test is passed, the set of points is systematically
sub-sampled down to 1000 points (it must be at least this long to start with).

The variance-covariance matrix of this sub-sample of chain is calculated. As above,
correlations greater than max_ cor are reduced to max_cor, correlations less than
-max_cor are increased to -max_cor, and very small nonzero variances are
increased (covariance_adjustment and min_diff). The result is the new
variance-covariance matrix of the proposal distribution.

The step size parameter is now on a completely different scale, and must also be reset.
It is set to a user-specified value (which may or may not be the same as the initial step
size). We recommend that some of the step size adaptations are set to occur after this,
so that the step size can be readjusted to an appropriate value which gives good
acceptance probabilities with the new matrix.

All modified versions of the covariance matrix are printed to the standard output, but
only the initial covariance matrix (inverse Hessian) is saved to the objectives file.
(As a consequence, a lapsed chain cannot be continued using —a if adaptive
covariance is used.) The number of covariance modifications by each iteration is
recorded as a column on the ocbjectives file.

The probability of acceptance for each jump is 0 if it would move out of the bounds, or 1 if it
improves the posterior, or (new posterior/old posterior) otherwise.

You can specify how often the position of the chain is recorded using the keep parameter.
For example, with keep 10, only every 10" sample is written to file.

You have the option to specify that some of the free parameters are fixed during MCMC. If
the chain starts at the point estimate or at a random location, these fixed parameters are set to
their values at the point estimate. If you specify the start of the chain using —1, these fixed
parameters are set to the values in the file.

A multivariate ¢ distribution is available as an alternative to the multivariate normal proposal
distribution. If you request multivariate ¢ proposals, you may want to change the degrees of
freedom from the default of 4. As the degrees of freedom decrease, the ¢ distribution becomes
more heavy tailed. This may lead to better convergence properties.

Having produced one or more Markov chains and looked at the diagnostics, you should reload
all the chain output files into CASAL and use them to generate a single posterior sample
(using —C). At this stage, the first burn_1in iterations for each chain are discarded (so, with
keep 10, burn_in 1000, the first 1000 recorded samples are discarded for each chain).
Unless a very large value of keep was originally chosen, it will be necessary to further
reduce the size of the posterior sample (possibly down to several hundred) such that it can be
analysed in a reasonable amount of time. This is done by sub-sampling. You specify the size
of the sub-sample to be produced (or else no sub-sampling is done). You have the option to
generate a systematic sub-sample (i.e., every nth point is kept) or a random sub-sample (the
former is recommended except with prior re-weighting, when the latter must be used).
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Given a posterior (sub)sample, CASAL can calculate a list of output quantities for each
sample point (see Section 7.2). These quantities can be dumped into a file (using casal -v)
and read into an external software package where the posterior distributions can be plotted
and/or summarised.

The posterior sample can also be used for projections (Section 7.3) and stochastic yield
calculations (Section 7.5). The advantage of this is that the parameter uncertainty, as
expressed in your posterior distribution, can be included into the risk and yield estimates.

It is possible to investigate the results that you would have got if you had used a different
prior. This is called prior re-weighting and is done by calculating the ratio of the new prior to
the original prior for each point in the posterior sample, then using these ratios as probability
weights when generating a random (not systematic) sub-sample with casal -C. Prior re-
weighting is applicable only if the new prior is zero in every part of the parameter space for
which the original prior was zero. Also, it is likely to be numerically unstable unless the new
prior is very small in every part of the parameter space for which the original prior was very
small.

6.6 Observations

The objective function is based on the goodness-of-fit of the model to your observations. In
the current release of CASAL, most observations are different kinds of time series, i.e., data
which were recorded for one or more years, in the same format each year. Examples of time
series data types include relative abundance indices, commercial catch length frequencies,
survey numbers-at-age, etc,.

Generally, time series must relate to a specified time step, and a specified area if the model is
spatial, and one or more years in which they were recorded. These are the exceptions; (a)
catch-at data (see below) can be based on more than one fishery and hence can cover multiple
areas or time steps, and (b) age-at-maturation data (see below) are not associated with a year,
time step, or area.

6.6.1 Types of observations
Each time series of observations belongs to one of the following types:

1. Abundance: including survey biomass indices and CPUE. Can be absolute abundance
or relative abundance. Can be expressed as biomass or numbers of fish.

2. Catch-at: including commercial catch proportions-at-age and proportions-at-size. Can
be split by sex.

3. Numbers-at: including survey numbers-at-age and numbers-at-size. Can be absolute
numbers or relative numbers. Can be split by sex.

4. Proportions-at. including survey proportions-at-age and proportions-at-size. Can be
split by sex.

5. Proportions mature: i.e., data on the proportion of fish, by age or size class, which are
mature. If you are using age frequency observations in an age-based model, you need
to say which age classes are included and whether the last age class is a plus group.
For example, your partition might include ages from 1 to 20+ but you might have
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observations only for 2, 3, 4, 5, and 6+ aged fish. The same applies to size frequency
observations in a size-based model.

6. Proportions migrating: i.e., data on the proportion of fish, by age or size class, which
went on a particular migration. More specifically, for each age/size class, the number
of migrating fish (in the source area of the migration, including all stocks) divided by
the total number of fish (in the source area of the migration, including all stocks). Can
be provided for either sex, or both combined.

7. Age size: i.e., observations of the ages and sizes of individual fish — primarily used
to fit size-at-age parameters in age-based models. See below.

8. Age-at-maturation: a specialised observation type, used for modelling orange roughy
and potentially other fish with similar characteristics. The age at which a mature
orange roughy became mature can be estimated by examining the otolith after
capture. The age-at-maturation data type allows CASAL to use this information for
estimation of maturation parameters. See below.

9. Selectivity-at: an unusual observation type, and should be used only when you have
some direct observations of the values of a selectivity ogive (to date we have only
seen this in a single shellfish model).

10. Tag-release: observations on the sizes of tagged fish in tag-release event, and should
only be used when tagging is part of the partition in an age-based model and if the tag
release type is free (see Section 5.4.8)

11. Tag-recapture: observations on the numbers of tagged (and scanned) fish recaptured
from a tag-release event, and should only be used when tagging is part of the
partition.

For each time series, as well as the above, you need to provide CASAL the following
information:

1. A label. (This should be unique, neither “Bpre” or “Bpost”, and should not contain
a full stop.)

2. The years in which they were observed.
3. For catch-at observations, the fishery or fisheries they cover.

4. For all observations except catch-at and age-at-maturation:

e The area in which they were observed (in a multi-area model).

e After what proportion of the mortality in the time step they occurred. (This is a
useful option as it allows you to insert an observation partway through a time
step, which can sometimes avoid splitting the time step into two.).

e The name of the selectivity ogive (except for tag-release and some options for
tag-recapture observations) which should be applied, if any (trawl survey data
should use the selectivity of the research vessel; CPUE data could arguably use
the selectivity of the commercial fleet).

5. If you are using age frequency observations in an age-based model, you need to say
which age classes are included and whether the last age class is a plus group. For
example, you might have observations of 2, 3, 4, 5, and 6+ aged fish. The same
applies to size frequency observations in a size-based model.
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10.

11.

12.

13.

14.

If you are using a set of size frequency observations in an age-based model, you need
to provide the size classes. (In a size-based model, the size bins used in the
observations must be consecutive groupings of the bins defined in the population
section of the model.)

For catch-at and proportions-at observations, you need to specify whether the
observations and fits for each year should sum to 1.

If you say that proportions must sum to 1, the CASAL calculates the expected values
using a denominator constructed from the number of fish in the age or size classes
included in the range specified in the observations.

Otherwise, if you do not force the proportions to sum to 1, then the expected values
are calculated using a denominator of the total number of fish in all age or size classes
in the partition. This approach was intended for backwards compatibility with
previous least-squares estimation software, and may not always work in likelihood
analysis.

The setting sum_to_one true is the default and is recommended. If the
observations don’t sum to 1 (and this is determined for each year independently), a
warning is printed and the observations (for that year) are rescaled to sum to 1. (Note
the test for observations summing to 1 is implemented with a tolerance of +£0.01.)

For relative observations, you need to provide the label of the relativity constant q.
Several time series can share the same g (see Section 6.7.2). You can also provide a
curvature parameter b for non-linear relationships (see Section 6.7.2).

For at-age data, whether ageing error should be applied (Section 6.7.7). It may be the
case that you have defined an ageing error but don’t want to apply it to one or more of
your time series, perhaps because the ageing error is meant to be included in the
likelihood.

For tag-release observations, the numbers released by size class.

For tag-recapture observations, the detection probability, and the numbers scanned
and recaptured.

For weighted least-squares estimation, you need to provide the weight u for the time
series and the (single) c.v. ¢ for each year (Section 6.7.1).

For likelihood or Bayesian analysis, you need to provide the error distribution and its
parameters (the error distributions are listed in Section 6.7.2). For variability
parameters (c.v.s, standard deviations, and effective sample sizes N), there can either
be one value for all years, or one value per year, or (for at-age or at-size data), one
value per age/size class per year. Note that c.v.s are expressed as a proportion not a
percentage, for example, if you put a c.v. of 40 then you probably meant 0.4. See also
specifying the process error (Section 6.7.3).

And of course you have to provide the observation values. Abundance values are
straightforward — one number per year. At-age or at-size data are a bit more
complicated. There is one row of numbers for each year, one column per age/size
class. If the observations are sexed, then there are male columns followed by female
columns, rather than separate male and female tables. Age-size and age-at-
maturation data are input as several rows of data, one per variable: age, size and
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potentially sex for age-size, and age at capture, age at maturation and potentially sex
for age-at-maturation

6.6.2 Age/size observations

Age/size data are observations of the ages and sizes of individual fish. They are primarily
used to fit size-at-age parameters in age-based models.

Age-size data cannot currently be used in growth path models, and can never be used in size-
based models. An error message will be issued if age-size observations are used without valid
size-at-age parameters (i.e., no @size_at_age_dist or with @size_at_age.cv=0).
Age-size observations can only be used in Bayesian or likelihood analysis (not weighted least
squares).

The data include a list of ages, a list of sizes, and (in a sexed model) a list of sexes, plus
information on when, where, and how the observations were collected. So, the i elements of
the lists contain the age, size, and sex of the i"™ fish observed.

There are several possible sampling regimes, i.e., assumptions about how the observed fish
were sampled from the general population of fish available at that time and place. The options
are:

® random: fish were a simple random sample from the available population

® random_at_sex: fish were a simple random sample within each sex

e random_at_size: fish were a simple random sample within each size class

® random_at_sex_and_size: fish were a simple random sample within each size
class of each sex

® random_at_age: fish were a simple random sample within each age class

® random_at_sex_and_age: fish were a simple random sample within each age
class of each sex

We believe the at_age and at_sex_and_age options are quite unlikely to be true, yet
they are widely applied in fisheries (for example, in the Coleraine (Hilborn et al. 2001) stock
modelling software). Probably the at_size and at_sex_and_size options are most
likely to hold for most NIWA finfish programmes.

In age-size data, there should be no observations for which the age is outside the age range
defined for the partition (this will generate a fatal error message), nor any non-integer ages.
Observations with ages below the minimum age in the partition should be removed.
Observations where an age exceeds the maximum age in the partition could either be included
in the plus group (i.e., with the observed age changed to that of the plus group) or removed,
depending on the circumstances. If there is no plus group in the partition they should be
removed. For random_at_age or random_at_sex_and_age samples they may be
either included or removed in the plus group. For all other sample types they could be
included in the plus group.

In addition, the user can specify a selectivity ogive which was applied in the sampling
process, perhaps due to the sampling gear that was used, or the areal availability of fish at that
place or time. The ogive can be age- or size-based: the choice has direct bearing on the
likelihood of the observations.

Under some sampling regimes, a size-based selectivity has no effect on the likelihood and
hence should not be used (since it adds computational time). This occurs when the character
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on which the selectivity acts was not randomly chosen in the sample: for instance, if 10 fish of
each sex were chosen from each size class, then a size-based selectivity will have had no
effect (except perhaps to make it easier/harder to find the 10 fish!). In general, a size-based
selectivity has no effect under the random_at_sex_and_size sampling method, and it
has no effect under the random_at_size method unless the selectivity is specified by sex.
If you attempt to use a size-based selectivity in this situation, CASAL will issue a warning
and will not apply the ogive. In cases where the size-based selectivity does have an effect,
CASAL will issue a warning that the selectivity adds to the computational time, and will
apply it as requested.

Similarly, under some sampling regimes, an age-based selectivity has no effect on the
likelihood, and should not be used. This applies under the random_at_sex_and_age
sampling method, and under the random_at_age method unless the selectivity is specified
by age. If you attempt to use an age-based selectivity in this situation, CASAL will issue a
warning and not apply the ogive.

The user must additionally specify the year, time step, and proportion of mortality when the
observations were collected, the area in which they were collected, and whether ageing error
is to be applied (by default it is applied, if ageing error parameters are supplied in the input
parameter files).

The user doesn’t need to specify an error distribution or its parameters: instead, the choice of
size-at-age distribution sampling regime, selectivity ogive, and ageing error determines the
likelihood equation. The appropriate likelihood for a single observation, (a,/,s), depends on
the nature of the sample.

With a random sample covering a single stock,

ptat (5 M o ][]

where N, is the number of fish of true age a’ and sex s (in the specified stock and area, and
after the specified selectivity, if any, is applied), M, is the probability that a fish of true age
a’ is observed as age a, and f,(/) is the probability density function describing the distribution
of sizes for a given (true) age a’ and sex s. When there is no ageing error the numerator of the

above equation simplifies to N,f,(/) and the denominator to Zalsta'x' .

If there is a mixture of stocks in the area sampled, then the N and f terms are stock-dependent
and the numerator and denominator are each summed over stocks

For all the other sample types the likelihood is a conditional probability, and is calculated as a
fraction whose numerator is the same as for P(a,ls) and with the denominator given in
Table 3.

If the user specifies a selectivity for an age/size observation, this is easy to deal with if the
selectivity is age-based. If N’ is the number at true age a’ and sex s before the selectivity is
applied then N, =N’ S(a’), where S is the selectivity function.

It’s more complicated with a size-based selectivity because we have also to distinguish
between the distribution of size at age before [f,(/)] and after [f, (/)] the selectivity is
applied (note: it is the former which is defined by the model parameters). The appropriate
equations are
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It

f (D)=5,(1) 17, (1)/jsx (1) £ (1) ar,

and

N =Ny, [ S, (1) £, (1) dl

It

The integrals in these equations are calculated by discrete approximation (using 5 points), in
the same way as size-based ogives are converted to age-based ogives.

Fits and residuals are not displayed for age-size data, instead CASAL shows the contribution
to the objective function of each individual age-size pair.

Table 3: Age/size likelihoods for the different sample types.

Sample Conditional Denominator
probability With ageing error Without
random_at_sex L=P(a,ls) Zu' N, same
random_at_age L=P(lLs | a) oo NegM ., zs' N,
random_at_size L=P(a,s 1) ZM. N, foo (1) same
random_at_sex_and_age L=P(lla,s) p N, M,, Ny
random_at_sex_and_size L=P(alls) Za, N, .f.. (l) same

6.6.3 Age-at-maturation observations

This type of observation makes sense only for species like orange roughy, in which it is
possible to tell (by examining a mature fish) the age it was when it matured. It is available
only in an age-based model with maturity in the partition and no more than one maturation
episode per year.

The use of this observation requires the important assumption that mortality is independent of
maturity status (i.e., the mortality experienced in a given year by fish of a given age is
independent of whether the fish is mature or not). This observation differs from most others in
that it is not associated with any particular area, year, time step, or ogive.

Suppose we have a sample of n fish and let A,; be the age at which the jth fish was sampled
and A, its age at maturation (the age which it matured). If the fish is not mature we will
signal this by setting A,,=0. It is not necessary that this be a fully random sample, but it is
necessary that, amongst fish of the same age, the probability of selection does not depend on
the age at maturation. That is, the sample must be random, conditional on the age at sampling.

The likelihood that CASAL associates with these observations is the conditional likelihood
P(A,jA,). (Note that if the sample were fully random it would be sensible to calculate the
joint likelihood, P(Ay,A,,)=P(A,l A;P(Ay;). Users can, in effect, achieve this by also
providing the A;; as a proportions_at observation.)

We further assume that mortality is independent of maturity status. This will often not be
strictly true. For example, it is false if migration to a fishing ground is dependent on maturity
status. The assumption is necessary because without it, the calculation of the likelihood,
though still possible in principle, would require fundamental structural changes to CASAL.
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CASAL does not check this assumption so it is up to the user to decide whether it is
warranted.

For orange roughy, the age at maturation cannot be determined until, say, k years after
maturation (because the maturation mark in the otolith is not clearly apparent until additional
otolith material has been deposited — see Francis & Horn 1997). This means that there would
be no observations with A—A,, < k. The user may specify a value k.

If there is no ageing error the likelihood is as,

0‘;[_]1“‘1 a. < alA-k
UA—I + za':amin Oa'Ua'—l
P(A,=alA;=A)=40 A-k<a<A

A-1

UA—I + Za':A—k Oa'Ua'—l
A-1

UA—I + Za' a Oa'Ua'—l

~“min

where O, is the proportion maturing at age d, dm, 1S the minimum age in the partition,
U,= HZ,:a (1-0,), and U o -1 =1. Note that this is independent of the year in which

‘min

the observation was made (which is not true if mortality depends on maturity status).

Ageing error can have a substantial effect on this type of observation (it makes the maturation
ogive appear to be less steep than it really is) so it is important to be able to allow for it.
However, it is not straightforward to allow for error in both A,,; and A; (in fact, if the sample
is not fully random we’re not sure it’s possible). Thus, we allow only for error in the A,,; we
do not allow for error either in the A; or in the detection of maturity. With ageing error, the
adjusted likelihood is given by

A-k
.. M,B,
b=a,_. a
a. < alA-k

A-k A-k min
2y Do, Mo B

da'=qa b=a, a
0

min ~%mi

P'(A,=alA,=A)=
Uyt z:jA—k O
Uty 0,

“Amin

where P,4=P(A,,=bl A;=A) and M,, is the probability that a fish with true maturity age b is
observed as having matured at age a (this is the ageing-error misclassification matrix — see
Section 6.7.7).

If the calculated likelihood for an observation is equal to zero then CASAL replaces this with
10 to avoid errors from taking the logarithm of zero.

Fits and residuals are not displayed for age-at-maturation data, instead CASAL shows the
contribution to the objective function of each individual age-at-maturation observation.

For these observations, the user must specify;
e age at maturation for each fish sampled
e age at capture for each fish sampled
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e optionally, the sex of each fish sampled
® [, the number of years after which maturity can be detected
e whether ageing error is used.

Note that users can moderately improve the performance of CASAL in cases where there are
observations on fish with an identical set of maturation ages, sampled ages, and sexes in
sexed observations, by placing such observations immediately adjacent to each other in the
age_at_maturation subcommands within the estimation.csl file. In this situation
(i.e., when an observation on a fish is identical to the fish immediately preceding) CASAL
simply copies the contribution of that observation to the likelihood rather than attempting to
recalculate it.

6.6.4 Tag-release observations

When a tagging episode is defined in an age-based model, the user needs to specify the
proportions-at-age of tagged fish. If only a size frequency of tagged fish was collected, then
the proportions-at-age are not known and must either be estimated or calculated. CASAL
provide two methods for determining the proportions-at-age, either deterministic or free (see
Section 5.4.8 for detail). When the free method is used in an age-based model, the
proportions-at-age can be estimated using a size frequency of tagged fish. The tag-release
observations type is used to supply this size frequency

The contribution to the negative-log-likelihood depends on the closeness of the match
between the observed size frequency and the fitted size frequency (which is obtained by
applying the size-at-age distribution to the estimated age frequency of tagged fish).

Each tag-release observation corresponds to a single tagging episode as defined in the
population section (Section 5.4.8). The observed size frequency must be provided (optionally
by sex, but only if it is a partition character). The bounds on the size classes are also specified.
The user also needs to specify a likelihood function, which can be any of those appropriate for
proportions data summing to 1 (e.g., multinomial, Coleraine, Fournier).

Note that if the model includes tagging mortality, the tag-release likelihood is calculated
before tagging mortality is applied.

6.6.5 Tag-recapture observations

This is the key observations class for tagging in CASAL. Tag data is primarily used to
estimate the population abundance of fish. In some models, this estimation can carried out
outside the model and the result is used as an absolute estimate of abundance in the model.
But in CASAL the tagging data can, alternatively, be fitted within the model.

Before you add a tag-recapture time series, you’ll need to define a tag-release event (Section
5.4.8) and possibly a tag-release observation (Section 6.6.4). Tagging events list the labels of
the tags which are modelled, and define the events where fish are tagged (i.e., CASAL moves
fish into the section of the partition corresponding to a specific tag).

The observations are divided into two parts (i) the number of fish that were scanned, and (ii)
the number of tags that were recaptured. Each can be specified by sex, or for both sexes
combined. The precise content of the scanned and recaptured observations depends on the
sampling method, and the available options are,
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1. age: both scanned and recaptured are vectors containing numbers-at-age. Only available
in an age-based model. The selectivity ogive is redundant and cannot be supplied.

2. size: both scanned and recaptured are vectors containing numbers-at-size. Can be used in
either an age- or size-based model. The selectivity ogive is redundant and cannot be
supplied.

3. age_size: recaptured fish are supplied as numbers-at-age, but scanned fish as numbers-at-
size. Only available in an age-based model. A selectivity ogive that applies to the scanned
fish would usually be supplied.

4. growth: recaptured fish are supplied as numbers-at-size only. This observation type is
only available in a size-based mode, and when the numbers of scanned samples are not
used. Instead, the expected size distribution of the released fish is compared with the size
distribution of recaptured fish as a means of estimating growth.

When defining the tag-recapture time series, you also need to specify,

e the time step

e the years (unlike a tag-release event, the tag-recapture observations can occur over

several years)

e the probability that each scanned tagged fish is detected as tagged (may be less than 1
if the observers are not infallible). The expected number of tags detected is calculated
by multiplying this number by the number of tagged fish in the sample
the area where the fish are recaptured (in a multi-area model)
optionally the stock of the recaptured fish (in a multi-stock model)
whether only mature fish are recaptured
optionally a selectivity ogive used in the recapture process (for some sample methods,
so far age and size, this is unnecessary and cannot be supplied)
the size classes if the observations are size-based in an age-based model
e whether ageing error is to be used, if it is included in the model (but note that ageing

error is redundant and ignored for some sampling options).

Unlike some observations classes, the tag-recapture observations must cover the same age
classes as the partition if they are age-based in an age-based model, or the same size classes as
the partition if they are size-based in a size-based model.

The tag-recapture likelihoods are specified below. Note that these likelihoods do not have any
user-set precision parameters such as N or c.v. (though there is a user-specified robustification

parameter in some of the likelihoods). Note that factorials are calculated using the log-gamma
function, to allow for non-integer arguments where necessary (and avoid overflow errors).

age: recaptures by age and scanned by age

Designed for situations where you know the age frequencies of the recaptured tagged fish and
of the scanned fish (only available in an age based model).

Here we define the likelihood as a binomial, i.e.,

74



The estimation section: Observations

—log(L)= )] {log(ni )—log((n, —m)!)—log(m,!)+m, log(Z(%,rN

i,n;>0 i

(n —m,-)log(z(l‘%’rm

where n; = number of fish at age i that were scanned
m; = number of fish at age i that were recaptured
N; = number of fish at age i in the available population (tagged and untagged)
M; = number of fish at age i in the available population that have the tag.

where Z(x,r) is a robustifying function with parameter »>0 (to prevent division by zero errors),
and is defined as

x where x>r

Z(x,r):{

r/(2—=x/r) otherwise

size: recaptures by length and scanned by length

Designed for situations where you know the size frequencies of the recaptured tagged fish and
of the scanned fish. Available in both age or size based models.

Here we define the likelihood as a binomial, but based on sizes, rather than ages,

—log(L)= ) [log(ni )—log((n, —m)!)—log(m,!)+m, log(Z(%,rB

i,n;>0 i

(n —mi)log(Z(l—%,r}ﬂ

where n; = number of fish at size i that were scanned
m; = number of fish at size i that were recaptured
N; = number of fish at size i in the available population (tagged and untagged)
M; = number of fish at size i in the available population that have the tag.

where Z(x,r) is a robustifying function with parameter »>0 (to prevent division by zero errors),
defined as

x where x>r

Z(x,r):{

r/(2—-x/r) otherwise

In an age-based model the number of fish at length in the population are determined from the
population state and the appropriate growth parameters.

age-size: recaptures by age and scanned by size
Designed for situations where you know the age frequency of the recaptured tagged fish but

only the size frequency of the scanned fish. Only available in an age based model. Uses a
selectivity if provided (the default is “none”).

75



CASAL User Manual v2.07-2005/08/21

The likelihood is quite complex and is calculated as two components. The age frequency of
scanned fish is calculated as proportional to the product of the selectivity-at-age and the age
distribution of available fish in the population. The first component is the likelihood of the
observed age frequency of recaptured tags, given the age frequency of scanned fish calculated
above. The second component is the likelihood of the observed size frequency of scanned
fish, again given the age frequency calculated above.

1. Likelihood for the age frequency of recaptured tagged fish. This is calculated as for the
“age” sample type earlier,

—log(L)= ) [log(ni )—log((n, —m)!)—log(m,!)+m, log(Z(%,rB

i,n;>0

(n —mi)log(Z(l—%,r}ﬂ

where n; = number of fish at age i that were scanned
m; = number of fish at age i that were recaptured
N; = number of fish at age i in the total population (tagged plus untagged)
M; = number of fish at age i in the total population that have tags

where Z(x,r) is a robustifying function with parameter »>0 (to prevent division by zero errors),
defined as

x where x>r

z(x,r)={

r/(2—x/r) otherwise

The values of n; are not provided by the user, but instead are calculated as the product of the
proportions-at-age of available fish (tagged or untagged) by the selectivity, scaled to sum to
the total number of fish scanned.

2. Likelihood for the size frequency of scanned fish. This is a multinomial likelihood, i.e.,
—log(L)=~log(N!)+ Y| log((NO,)!) - NO, log(Z(E,.r))]

where N = the number of scanned fish in that year
O; = the observed proportions from scanned_[year]
E; = expected proportions calculated by converting the n; above to proportions-at-size
using the size-at-age distribution.

Where Z(x,r) is the robustifying function defined above.

growth: recaptures by size, with no information on the number of fish scanned
Designed for situations where you intend to estimate growth using the size frequency of

recaptured fish, without using any information on scanned fish. Only available in a size-based
model.
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The likelihood is a simple multinomial of the proportions observed at size, given the expected
proportions at size in the tagged population, with the sample size determined by the number
of individuals recaptured, i.e.,

~log(L)=~log(N!)+ Y[ log((NO,)!) = NO, log(Z(E,.r)) |

where N = the number of recaptured fish in that year
O; = proportion of fish at size i that were recaptured
E; = proportion of fish at size i in the tagged population

and Z(x,r) is the robustifying function defined above.

Note that if you are also applying fishing or natural mortality to the population between the
time of release and recapture, then the number of fish at size may be biased (although this
may depend on the various mortality or fishing selectivities applied). A work-around is to
define the tagged fish as being from a separate stock in a separate area (i.e., where they are
not subject to fishing mortality, and the natural mortality is either zero or applied as a constant
rate over all size classes).

6.7 The objective function

In maximum likelihood estimation, the objective function is a negative log-likelihood,
Objective (p)=—_log[ L(p!0,)]

where p is a vector of the free parameters, L the likelihood function and O; the ith
observation.

In Bayesian estimation, the objective function is a negative log-posterior,
Objective (p)=-_log[ L(p!10,)]-log[ 7(p)]
where 7 is the joint prior density of the parameters p.

In weighted least-squares estimation, the objective function is a weighted sum of squares on
the log-scale,

Objective (p)= z W, (log(max(R,kp )) - log(max(Oi,ku )))2

where w; is the weight (see Section 6.7.1), and P; the predicted (fitted) value, of O;, and k, and
k, are small robustifying constants.

Under any estimation method, penalties can be added to the objective function (see Section
6.7.6). You will usually want to use penalties to ensure that the exploitation rate constraints
on your fisheries are not breached (otherwise there is nothing to prevent the model from
having abundances so low that the recorded catches could not have been taken). A penalty to
force the YCS to average to 1 (i.e., to have mean 1) may also be necessary.
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6.7.1 Weighted least-squares

In weighted least-squares estimation, each observation has a weight. The default option is for
all weights to be equal (i.e., ordinary least-squares). We also implement the “Cordue”
weighting scheme (see, for example, Cordue 2000). In this framework, you should specify a
weight u;, and a c.v. ¢;, for each yeary, of each time series i. Then the weights on the k
individual observations from time series i, for year y of n; years, are

W u;n;

y

) R 1
kciy z 2
i Gy

The original “Cordue” formulation was further modified by ‘sources’. Several time series
collected in similar ways (e.g., from the same set of trawl surveys) could share the same
source. See Cordue (2000) for details. This feature is not implemented in CASAL.

6.7.2 Likelihoods
CASAL has five different kinds of likelihoods:

1. Those used for proportions data, where the proportions should sum to 1 over the
columns of the partition. This includes commercial and survey proportions-at-size
and proportions-at-age data, but not proportions mature or proportions migrating.

2. Those used for proportions data, where the proportion can be between 0 and 1 in each
cell, and need not sum to 1 over the columns of the partition. This includes selectivity
at, proportions mature, and proportions migrating.

3. Those used for absolute index data. These likelihoods are used for absolute
abundance and can also be used for selectivity at, proportions mature, and proportions
migrating.

4. Those used for relative index data, including relative abundance and relative survey
numbers-at-age.

5. Specialized likelihoods used for age-size data, age-at-maturation data, or tag-
release/recapture events — see Section 6.6 for details.

See also Section 6.7.3 for detail about process error.

Likelihoods for proportions data (with proportions summing to 1 across
columns of the partition)

These likelihoods are used for commercial and survey proportions-at-size and proportions-at-
age data, but not proportions mature or proportions migrating. They apply to data which are
distributed across columns of the partition, typically summing to 1 across columns.”

Let O be the observations for a single year in a proportions time series, expressed as a vector
of n proportions summing to 1; let E be the corresponding fitted values; let N be the “effective
sample size” parameter. Then you can use the following likelihoods, which are expressed on
the objective-function scale of —log(L):
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Multinomial
—log(L) = —log(N!) + Z[log((NOi )') - NO, log(Z (El. , r))]

where Z(x,r) is a robustifying function with parameter »>0 (to prevent division by
zero errors), defined as

x where x>r

r/(2—x/r) otherwise

Z(x,r):{

Fournier

~log(L)= O.SZlog(E;)—Zlog[exp{%J + 0.01]

where E/=(1-E,)E, +0.1/n and N"=min(N,1000).

This is a robustified multivariate normal (it would be the usual multivariate normal
with 02=(1—E1)EifN if the 0.1/n and 0.01 terms are omitted and if N'=N). See
Fournier et al. (1990).

Coleraine. As per Fournier above, but replace E, with O/=(1-0,)0,+0.1/n. A

recent reference is Starr et al. (1999).
(Robustified) lognormal

2
n log(O./E,
—log(L)zZ:l_:l log(o;)—log exp{—O.S[%+O.SO}] J+r

i

where o, = log(1+cl.2) , the ¢;’s are c.v.s by age/size class, and r is a robustifying
constant.
The robustification term r is intended to reduce the influence of outliers, in the same

way as the robustified Fournier likelihoods above. We recommend r=0.01, though
smaller values (0.001, 0.0001, ...) could be used for a lesser robustifying effect.

Likelihoods for proportions data (with proportions between 0 and 1 in each

These likelihoods are used for proportions mature and proportions migrating data. They apply
to data which can be between O and 1 in each cell, not necessarily summing to 1 across
columns.

So far there is just one likelihood in this category, the binomial, but this is implemented in
two forms; the standard binomial (termed “binomial”), and the normal approximation to the
binomial (“binomial-approx”).
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Let O; be the observations for a single year in a time series, expressed as a vector of n
proportions between 0 and 1; let E; be the corresponding fitted values; let N; be the “effective
sample size” parameter for each observed proportion. A single effective sample size may be
specified for all observations in a given year, or different sample sizes may be specified for
each observation in the year. Then the binomial likelihood, which is expressed on the
objective-function scale of —log(L), is:

—log(L) =Z[log(N, N—log((N,(1-0,))!) ~log((N,0,)!) + N,0,log(Z (E,.r))

1

+N,(1-0,)log(Z(1-E,.r)) ]

where Z(x,r) is a robustifying function with parameter »>0 (to prevent division by zero
errors), defined as

x where x>r

Z(x,r)={

r/(2—x/r) otherwise

And the binomial-approx likelihood is:

—log(L):log(\/(Ei+r)(1_Ef+r)/Ni)+lz[ 0, -E, J

27\ J(E +r)(1-E +r)/N,

Here r is a non-negative robustifying constant (a nonzero value of r is recommended if only to
prevent division by zero errors).

This likelihood corresponds to the assumption that, for each observation in each year, a
simple random sample of size N; was taken from the partition and that the observation value
was the proportion of fish in the sample who migrated/matured/etc.

Likelihoods for absolute index data

Let O be the observations for a single year in an time series of absolute indices, expressed as a
vector of n elements (with n=1 for abundance indices, n>1 for proportions mature or
proportions migrating); let E be the corresponding fitted values; express the variability of
each observation O; in terms of its c.v. ¢; (or in one case, its standard deviation s;). Then you
can use the following likelihoods, which are expressed on the objective-function scale
of —log(L):

1. Normal

“tog(L) = Z;’l[log(ciEi )+ 0.5(@]7

c.E

i

This reflects the distributional assumption that O; has the normal distribution, with
mean E; and c.v. ¢;.

2. Normal parameterised by standard deviation rather than c.v.
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“log(L)=3" [log( )+05(0 EU

S,

1

This reflects the distributional assumption that O; has the normal distribution, with
mean E; and standard deviation s;.

Lognormal:

2
n log(O,
—log(L Zl ) log (o, og( /B, )+0.50',} J

o,
where o, —Jlog 1+c

This reflects the distributional assumptions that O; has the lognormal distribution, that
the mean of O, is E; and the c.v. of O; s ¢;.

Normal-log

—log(L)= Z?l[log(o; )+ O.S[IOg(O—i/Ei)] J

O.

1

where o, = log(1+ci2) .

This reflects the distributional assumption that log(O;) has the normal distribution,
that the mean of log(0;) is log(E;) and the c.v. of O; is c;.

We make the distinction between lognormal and normal-log because they represent subtly
different assumptions. With the lognormal, O has mean E and hence the mean of log(0O) is
less than log(E): whereas with the normal-log, log(O) has mean log(F) and hence the mean of
O is more than E.

Relativity constants q; likelihoods for relative index data

The log-likelihoods of relative observations depend on the error distribution and the way in
which ¢’s are treated in the model. There are two approaches to modelling g’s:

1.

The g’s can be treated as ‘nuisance’ parameters. For each set of values of the free
parameters, the model uses the values of the g’s which minimise the objective
function. These optimal g’s are calculated algebraically (see Section 6.7.4). If one of
the ¢’s falls outside the bounds specified by the user, it is set equal to the closest
bound. This approach reduces the size of the parameter vector and hence should
improve the performance of the estimation method. It is the default in CASAL.
However, it is not correct when calculating a sample from the posterior in a Bayesian
analysis (except asymptotically, see Walters & Ludwig 1994) and we offer the
following alternative;

2. The g’s can be treated as ordinary free parameters.
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For both options, we need to evaluate the contribution of O to the negative log-likelihood for
a given value of g. Let O be the observations for a single year in an time series of relative
indices, expressed as a vector of n elements (with n=1 for relative abundance indices, n>1 for
relative numbers-at-age or at-size). Let E be the corresponding fitted values and ¢ the
relativity constant for the time series. It is possible for two or more time series collected in
similar ways to use the same g. Each observation O; varies about gE; — express the variability
of O; in terms of its c.v. ¢; (or in one case, its standard deviation s;). Here are the likelihoods,
which are expressed on the objective-function scale of —log(L):
1. Normal

—log(L)= Z?zl(log(cini )+ OS[MJ J

c¢.qE;

This reflects the distributional assumption that O; has the normal distribution, with
mean gE; and c.v. ¢;.

2. Lognormal

—log(L)=)" 1og(a,)+0.5(M+o.5aiﬂ

o
where o, =, [log(l+ci2) .

This reflects the distributional assumptions that O; has the lognormal distribution, that
the mean of O; is gE; and the c.v. of O; is c;.

3. Normal-log

—log(L)= Z;{log(oy )+ O.S(MJ }

O.
where o, =, llog(1+cl.2) .

This reflects the distributional assumption that log(O;) has the normal distribution,
that the mean of log(0;) is log(gE;) and the c.v. of O; is ¢;.

4. Robustified lognormal

O.

1

2
n log (O, /qE,
—log(L)=Y" | log(c,)~log exp[—O.S[M+O.50‘,j J+r

where o, = log(l + cl.z) and r is a robustifying constant.

This modification to the lognormal is intended to reduce the influence of outliers, and
is analogous to the robustified normal distributions of Fournier et al. (1990). We
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recommend =0.01, though smaller values (0.001, 0.0001, ...) could be used for a
lesser robustifying effect. We believe that this likelihood may be most appropriate for
relative numbers-at-age or at-size but not for relative abundance indices (its effects
are equivalent to dropping observations with large normalised residuals, which may
be undesirable for abundance data).

Optionally, a curvature parameter can be used, in which case the error distribution of O; is
centred on q(El. / max (E ))”b rather than gE;. This is intended for modelling hyper-depletion
or hyper-stability in CPUE (see Harley et al. 2001). Note that the interpretation of g changes

as the expected values are rescaled. We also note that this option has not yet been fully tested
in CASAL.

6.7.3 Process error

In a likelihood-based or Bayesian analysis, you can specify a ‘process error’ for each set of
observations. This has the effect of increasing the error in the data (by increasing c.v.s or

standard deviations, or decreasing effective sample sizes), and hence of decreasing the weight
given to the data in the fitting process.

For data where the likelihood is parameterised by the c.v., you can specify the process error
for a given set of observations as a c.v., in which case all the c.v.s ¢; are changed to

' [
Ci - Ci Cprocess?ermr .

Similarly, if the likelihood is parameterised by the standard deviation,

’ _ ’ 2 2
O-i - O-i +O—process_ermr ’

and by the effective sample size,

: 1
N, =
"IN, +IN

process _error

In all three cases, the process error has more effect on small errors than on large ones. Be
clear that a large N, ocess error means a small process error.

CASAL allows you to estimate process error, though whether you should is another matter. If
you want to make several sets of observations share the same process error, use the same
subcommand in the est imate block (see Section 6.2).

6.7.4 Calculating nuisance g’s

This section describes the equations used to calculate nuisance g’s (see Section 6.7.2). From
the user’s point of view, the essence is that you can use nuisance ¢’s in the following
situations:

1. With least-squares.

2. With maximum likelihood.
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3. With Bayesian estimation, providing that your prior on the g is one of the following:
e  Uniform
¢  Uniform-log
e Lognormal with observations distributed lognormal, robustified lognormal, or
normal-log.

For weighted least-squares, nuisance g’s are calculated as per Cordue (2000),

max (O, ,k, )]

max(P kp)

g =exp Z z wlog[

where the summation is over the n observations O; sharing the same gq.
For ordinary least-squares, this reduces to

G=exp Zlog[max (O, ;] ‘

max(R k

The equations used for calculating nuisance gs in maximum likelihood or Bayesian analysis
are indexed in Table 4.

Table 4: Equations used to calculate nuisance ¢’s. (*=no analytic solution found.)

Distribution of Maximum Bayesian with specified prior on ¢g
observations likelihood Uniform Uniform-log Normal Lognormal
Normal (1) 1) 4) * *
Lognormal ) 2) 5) * (6)
Normal-log 3) 3) 7 * (8)

Note that ¢’s are calculated for robustified lognormal likelihoods as if they were ordinary
lognormal likelihoods.

The equations and their derivations follow. Let o, = log(l + c?) throughout, and let »n be the
number of observations in the time series. The case of multiple time series sharing the same ¢
is addressed at the end of the subsection.

First, consider maximum likelihood estimation. When the (O;) are assumed to be normally
distributed,

2
—log(L ZIOg ¢,q.E, +052(0i_qu]

i c.qE,

The value of g which minimises the objective function is found by solving

a/aq(—log(L)):O.
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hence

=S, ++/S>+4nS, W
q =
2n

where S, =>(0,/c’E,) and S, =Z(0,./c,.E,.)2.

i

When the (O;) are assumed to be lognormally distributed,

log(0,)-log(gE,)+0.567 \
—log(L ZIOg )+0. SZL 02(0,)-log(qF;)+ O-’J ,

(o

i

o’

1

G exp| 951 ES: o
S4

where S, =Z(log(0i/Ei)/O'i2) and S, =Z(1/0'i2).

lz(log(Ol./Ei)—log(q)+0.50'l.2 J ’

When the (O;) are assumed to be distributed normal-log, the equations are similar,

1 -1 E,
—log(L Zlog )+0. SZL o2(9 oe(q )J )

(o

1

i(_log(L)):—_lz[log(Oi/EiZ_log(Q)J’

(o

1

n S,
— 3
q eXP(S‘J (3)

Next consider Bayesian estimation, where we must also specify a prior for q.

The effects of the prior on the equations are to replace likelihood L by posterior P throughout,
to add -log(n(g)) to the equation for —log(P) and 8/ aq(—log (z(q))) to the equation for

9/dg(~log(P)).

This last term is O for a uniform prior on ¢, 1/g for a log-uniform prior, 1 ﬂ"z for a normal
'Lt ch

2
q

lo -lo
prior, and l{l S+ glq)-log (,uq )J for a lognormal prior,
q
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where 1, and ¢, are the mean and c.v. of the prior on g and o, = log(l + cj) . Clearly, if the

prior is uniform, the equation for ¢ is the same as for maximum likelihood estimation.

When the (O;) are assumed to be normally distributed and the prior is log-uniform,
equation (1) becomes

—S, ++/SE+4(n+1)S,
4)

2(n+1)

qg=

but we cannot solve for ¢ with either a normal or lognormal prior.

When the O; are assumed to be lognormally distributed and the prior is log-uniform,
equation (2) becomes

c}=exp(0'5n_1+s3] )
S4

and if the prior is lognormal,

CA]:exp{O.Sn—l.5+log(,uq)/0'3+S3J’ ©

2
S, + 1/ o,
but we cannot solve for ¢ with a normal prior.

When the (O;) are assumed to be distributed normal-log and the prior is log-uniform,

N S, —1
qzexp(; J (7)

and if the prior is lognormal,

é:exp{—l.Sﬂog(,uq )/o? +S3J

5, +1/07 ®

but again we cannot solve for ¢ with a normal prior.

The above equations have been written for a single time series (O;). Suppose now that there
are m time series, all with the same ¢, and all with the same error distribution. This has little
effect on the above equations. All we need to do is to extend the summations in S;, S, S3, and
S, over all observations in the m time series, and let n=Xn;.

6.7.5 Priors

In a Bayesian analysis, you need to give a prior for every free parameter. There are no
defaults.
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Note that when some of these priors are parameterised in terms of mean, c.v., and standard
deviation, these refer to the parameters of the distribution before bounds are applied. The
moments of the prior after the bounds are applied may differ.

For a single scalar parameter p, you can choose between the following priors (expressed in
terms of their contribution to the objective function):

1. Uniform,
—log(ﬂ'(p)) =0.

2. Uniform-log (i.e., log(p) ~ uniform),

—log(7(p))=1log(p).

3. Normal with mean x and c.v. c,

—log(7(p)) =0.5(u]2.

cu

4. Normal with mean u and standard deviation o,

~log(7(p)) :0.5(%)2.

5. Lognormal with mean x and c.v. c. s= log(1+cz) , 1s the standard deviation of

log(p).

log(p/u) +5J2.
s 2

-ta(r(7) 10z () 03]

6. Normal-log with log(p) having mean m and standard deviation s,

log(p)—mjz‘

—log(ﬂ'(p))zlog(p)+0.5[ ;

7. Beta with mean y and standard deviation o, and range parameters A and B.

_log(jz'(p)) =(1-m)log(p—A)+(1-n)log(B- p),

’U_A, and 7=

where v = >
B-A (o2

and then m=7v, and n=7(1-v). Note that the beta prior is undefined when 7<0.

Vectors of parameters can be independently (but not necessarily identically) distributed
according to any of the above forms, in which case the joint negative-log-prior for the vector
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is the sum of the negative-log-priors of the components. Values of each parameter need to be
specified for each element of the vector.

In addition, for a vector p of n identically distributed parameters (for example, YCS) the
following priors are allowed:

1. Multivariate normal from a stationary AR(1) process with parameters

u=E(p;), o=sqrt(Var(p;)), and p=Cor(p;, pi1),

n

2 i T i-1 T (1_ )2
—log(z(p))z(plz;_'f) +’Z;‘(p I:'f(l—;) ?) +nlog(0')+0.5(n—l)log(l—l)z)

In other words, there are (n—1) i.i.d. normal variates z; with mean g and variance o,

such that p, = pp, +(\/1—p2) zZ;.

If p=0, then the p;’s are i.i.d. normal.

2. Multivariate normal-log, where log(p) forms a stationary AR(1) process as per 1.
above, with parameters

m=E(log(p))), s=sqrt(Var(log(p:))), and r=Cor(log(p;), log(pi:1)),

n

m)2 Z(log(pi)—rlog(p,_l)—m(l—”))2

(log(pl)_ i=2
2s? " 25’ (1 — )

+nlog(s)+0.5(n—1)log(1-r*)+ Zp,

—log(ﬂ'(p)) =

3. Multivariate normal-log with mean 1, where E(p;)=1 and log(p) forms a stationary
AR(1) process as for the multivariate normal above, with parameters

s=sqrt(Var(log(p,))) and r=Cor(log(p,), log(pi1)),

(10g(p)) +055%) g(log(p,»)—rlog(pi1)+0.5s2 (1-r)’
~loz((p))= 2s° i 2s” (1_r2)

+nlog(s)+0.5(n—1)log(1-r*)+ Zp,

(i.e., m=—0.55")
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6.7.6 Penalties

Penalties can be added to any objective function. You will usually want to use a catch limit
penalty for each fishery to ensure that the exploitation rate constraints on your fisheries are
not breached (otherwise there is nothing to prevent the model from having abundances so low
that the recorded catches could not have been taken). A vector average penalty to force YCS
to average to 1 is also very common.

For each penalty, you need to specify a multiplier. The objective function is increased by this
multiplier times the penalty as described below. In some cases you will want to make the
multiplier quite large, so as to prohibit some model behaviour. So far, the penalties
implemented in CASAL are:

1. Ogive smoothing penalty:

Applied to an allvalues or allvalues_bounded ogive parameter (Section
5.6). Sum of squares of rth differences. This encourages the ogive to be like a
polynomial of degree(r—1). For compatibility with previous NIWA software, you can
choose to exclude indices outside a given set of bounds (these indices are ignored
during differencing).

2. Catch limit penalty:

Sum of squares of (actual catch less specified catch), optionally on a log scale, for a
single fishery. These are intended to avoid parameter values that cause the specified
fishing pressure limits to be exceeded. The penalty is only applied if some fishing
pressure limit has been exceeded (since inaccuracy in the iterative solution for F in
the Baranov equation leads to actual catches slightly less than specified, and you
don’t want to penalise that).

3. Vector average penalty:

Applied to a vector parameter. Square of (mean(vector)-k), or of
(mean(log(vector))—-/), or of (log(mean(vector)/m)). Encourages the vector to average
arithmetically to k or m, or geometrically to exp(/). Typically used for YCS with k=1
or m=1 or /=0, to encourage the YCS to centre on 1.

4. Vector smoothing penalty:
Applied to a vector parameter. Sum of squares of rth differences. This encourages the
vector to be like a polynomial of degree (r—1). Note a range of the vector to be
“smoothed” can be specified (and if not, the smoother is applied to the entire vector),
but this must be specified by an index of the vector and must be between 1 and the
length of the vector, inclusive.

5. Element difference penalty:

Applied to two vector parameters. Square of (vector,[i]-vector,[i]). Encourages the
ith elements of the two vectors to be equal.

6. YCS difference penalty:

Applied to the YCS of two different stocks. Squared difference between the YCS
values for a given year in the two stocks. Used to encourage the two stocks to have
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the same YCS for that year. If the Haist YCS parameterisation is used, then the
penalty applies to the YCS (as one would expect) and not the Y’s.

7. Similar gs penalty:

Applied to two relativity constants g (Section 6.7.2). Square of (log(g;)—log(g;)). This
is intended to encourage g; and g; to be similar, because they belong to observations
collected in similar ways.

8. Ogive comparison penalty:

Applied to two ogive parameters (Section 5.6). Sum of squares of
max(ogive,—ogive,,0). Encourages ogive; to be at or below ogive,. Typically ogive,
is a selectivity for males, ogive, is a selectivity for females. This is intended to
encourage female selectivities to be greater than those of males at the same age/size.
For compatibility with previous NIWA software, you can choose to exclude indices
outside a given set of bounds (these indices are dropped off before comparing). Note
that this penalty may not be applied to size-based ogives in age-based models.

9. Ogive difference penalty:

Applied to two ogive parameters (Section 5.6). Square of (ogive,—ogive,) for a single
size or age class. This is intended to encourage the two ogives to take the same value
for that class. Note that this penalty may not be applied to size-based ogives in age-
based models.

10. Fish-tagged penalty:

Applied to a specific tagging episode. Square of min(0, number of fish meant to be
tagged less number of fish actually tagged). Intended to discourage parameter values
which lead to not enough fish being present at the tagging episode. Considering that
the tonnage of fish actually tagged is usually very small, this penalty will generally be
Zero.

6.7.7 Ageing error

In age-based models, we allow ageing error in at-age observations to be modelled explicitly.
After E (expected) values are calculated for at-age observations, misclassification rates are
applied to them, which has the effect of ‘smearing’ the age frequencies. The resulting
‘smeared’ age frequencies are used in calculating the objective function.

Ageing error is optional, and if it is used, it may be omitted for any individual time series.
However, CASAL does not yet implement changes in ageing error over time, or different
ageing error regimes for different time series.

The ageing error models implemented in CASAL are as follows:

1. Off by one:

Proportion p; of fish of each age a are misclassified as age a—1 and proportion p, are
misclassified as age a+1. Fish of age a < k are not misclassified. If there is no plus
group in the population model, then proportion p; fish of the oldest age class will ‘fall
off the edge’ and disappear.
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2. Normal:
Fish of age a are classified as ages which are normally distributed with mean a and
constant c.v. c¢. As above, if there is no plus group in the population model, some fish
of the older age classes may disappear. If ¢ is high enough, some fish of the younger
age classes may ‘fall off the other edge’ too.
3. Misclassification matrix:
A complete misclassification matrix M is provided, such that M;; is the probability that
a fish of age i will be classified as age j. Rows need not sum to 1, but a warning will be
issued if they don’t.
Note that the expected values (fits) reported by CASAL for an individual time series with
ageing error, have had the ageing error applied.

6.8 Residuals

CASAL can generate three kinds of residuals, (1) the usual residuals (i.e., observed less
fitted), (2) Pearson residuals, and (3) normalised residuals. There are defined in CASAL as,

Let O be an observation and F' the corresponding fit (=gE for relative observations), then:
1. Residuals are defined as (O-F).

2. Pearson residuals attempt to express the residual relative to the variability of the
observation, and are defined as (O—F)/std.dev.(0), where std.dev.(O) is calculated as,

e Fxcv for normal, lognormal, robustified lognormal, and normal-log error
distributions.

e s for normal-by-standard deviation error distributions.

F(l-F
(—)for multinomial or binomial likelihoods (regardless of the robustifying

constant).

’

for Fournier likelihoods (where F=(1-F,)F, +0.1/n and N"=min(N,1000),

’

on the basis that they would be equivalent to a multivariate normal with this standard
deviation if the final (+0.01) term was omitted.)

/% for Coleraine error likelihoods (similarly).

3. Normalised residuals attempt to express the residual on a standard normal scale, and are
defined as,

e Equal to the Pearson residuals for normal error distributions.
. (log(O/F)+O.502)/a for lognormal (including robustified lognormal) error

distributions, where o =,/log (1 +ov? ) .
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® (log(O/F)/o for normal-log error distributions, again with o =, /10g(1 + cvz) .

e And are otherwise undefined.

6.9 Generate simulated observations

CASAL can generate simulated observations from a parameter fit, i.e., generate simulated
observations which are randomly distributed (according to the error assumptions defined for
the observations) around fits calculated from one or more sets of the ‘true’ parameter values.
This is a form of parametric bootstrap.

One use of this feature is to investigate the uncertainty in CASAL parameter estimates, using
a bootstrapping approach:

1. Get one or more sets of free parameters, either using an assumed set of values, a point
estimate or a sample from the posterior distribution

2. Use CASAL to generate many sets of simulated observations, on the assumption that
the free parameter estimates are the true values

3. For each set of simulated observations, generate a simulated estimate of the free
parameters (replacing the real observations with the randomised observations)

4. The variability in the simulated estimates is a bootstrap estimate of the uncertainty in
the estimation process.

This approach allows the user to assess estimator performance in varying conditions. For
example, the simulated estimates could be carried out using a simplified estimation procedure
(perhaps fixing some previously free parameters), and the effect of this simplification on
estimator performance could then be investigated.

The way in which the above process could be undertaken might be:

1. Estimate the free parameters using —e, —E or —m. Generate a file of free parameter
values using the usual format (described in Section 3.3)

2. Run CASAL in simulator mode (-s), supplying the file of free parameter values with
the command line switch -i, using the same input parameter files
(population.csl and estimation.csl). The results are files of simulated
observations.

3. CASAL creates one file for each set of simulated observations. The total number of
files is equal to the number of free parameter sets supplied, multiplied by the number
of simulations per parameter set (the later is the number that you supply as an
argument to —s on the CASAL command line).

4. Each file contains a set of observations, using the standard CASAL syntax. Note that
you can specify what observations you wish to simulate by turning off bootstraps for
each set of observations by setting the observation subcommand do_bootstrap to
False.

5. All commands and subcommands will be unchanged from the original estimation
parameter file, except for the original observation values which will be replaced with
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randomised values. (although the subcommands will appear in alphabetical order, and
comments and white space will have been removed.)

6. A comment is appended to the top of each file, listing the free parameter values that
were used to generate it.

7. Outside of CASAL, attach (append or prepend) a ‘stub’ estimation parameter file to
each file of simulated observations. This stub file should contain all the estimation
parameters other than the observations, and include a list of parameters to be
estimated, etc., using the usual CASAL syntax.

8. Using each (stub plus simulated observations) file along with standard input
parameter files (population.csl and output.csl), carry out an estimate of
the free parameters using —e, -E, or even —m or —Y.

The utility program simCASAL is available to assist with such a process. See Section 12.1.

The remainder of this section describes the method used to produce the simulated
observations for a single set of ‘true’ free parameter values.

First, the model is run using the true free parameter values, and a set of fits is produced for
each set of observations. If a set of observations uses ageing error, then ageing error is applied
to the fits as per normal. If there are relative observations, then the catchability coefficient g is
applied to the fits as per normal.

Second, each set of observations is randomised, based on
o the fitted values
e the type of likelihood specified (note, likelihoods must be provided — CASAL
cannot be used as a simulator if estimation is by least squares)
e the variability parameters (c.v. N, or o). Variability is increased by the process error
associated with that time series, if any (see Section 6.7.3). If the process error
parameter is a free parameter, then the ‘true value’ of the process error is used.

Age-size and age-at-maturation observations cannot be simulated. You need to remove these
observations or set do_bootstrap to False before using CASAL as a simulator.

The following text describes the process of generating simulated observations for each type of
likelihood.

1. Normal likelihood parameterised by c.v.: Let E|; be the fitted value for observation i
in year y and c,; be the corresponding c.v. (adjusted by process error if applicable).
Each simulated observation value S); is generated as an independent normal deviate
with mean E,; and standard deviation Ej; cy;.

2. Normal likelihood parameterised by standard deviation: Let E|; be the fitted value for
observation i in year y and s,; be the corresponding standard deviation (adjusted by
process error if applicable). Each simulated observation value S,; is generated as an
independent normal deviate with mean E); and standard deviation s,;.

3. Log-normal likelihood: Let E,; be the fitted value for observation i in year y and c,; be
the corresponding c.v. (adjusted by process error if applicable). Each simulated
observation value S; is generated as an independent lognormal deviate with mean and
standard deviation (on the natural scale, not the log-scale) of E,, and E,; cy
respectively. The robustification parameter r is ignored.
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4. Normal-log likelihood: Let E); be the fitted value for observation i in year y and c,; be
the corresponding c.v. (adjusted by process error if applicable). Each simulated
observation value S; is generated as an independent lognormal deviate, such that the
mean of log(S,,) is log(E,;) and the c.v. of Sy, is cy;.

5. Multinomial likelihood: This is only allowed if the same N value is used for all
observations of the same time series in the same year. Let E,; be the fitted value for
observation i in year y, for i between 1 and n, and let N, be the equivalent sample size
for that year (rounded up to the next whole number, and adjusted by process error if
applicable).Any robustification is ignored. The following process is carried out for
each year y:

a. A sample of N data values from 1 to n is generated using the multinomial
distribution, using sample probabilities proportional to the values of E);.

b. Each simulated observation value S,; is calculated as the proportion of the N
sampled values equalling i.

c. The simulated observation values S,; are then rescaled so that their sum is
equal to the sum of E,;. (The sum of the fitted values for the year may not be
equal to 1 if sum_to_one=False and the age/size range of the
observations does not cover all columns in the partition.)

6. Coleraine or Fournier likelihood: These are not ‘proper’ likelihoods in the technical
sense, and we do not use them as distributions for generating simulated values.
Instead, as they are analogous to the multinomial likelihood, we apply the above
procedure for the multinomial, using the supplied value of the N parameter.

7. Binomial likelihood: Let E,; be the fitted value for observation i in year y, for i
between 1 and n, and N,; the corresponding equivalent sample size (rounded up to the
next whole number, and adjusted by process error if applicable). Any robustification
is ignored. The following process is carried out for each observation i in each year y:

a. A sample of N,; independent binary variates is generated, equalling 1 with
probability E\;.

b. The simulated observation value S); is calculated as the sum of these binary
variates divided by N,,.
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7.

THE OUTPUT SECTION

This section contains three main topics.

1.

Section 7.1 describes the printouts from CASAL, which are dumped to standard
output (and can be redirected to a file, and imported into S/S-Plus/R using the
functions defined in Section 13).

Section 7.3 describes projections in CASAL.

Sections 7.4 and 7.5 describe yield calculations in CASAL, including deterministic
MSY, various yield per recruit statistics, MCY, CAY, and CSP.

Information about MCMC output file formats is given earlier in Section 3.1.

7.1

Printouts from CASAL

CASAL prints out a bunch of different things to standard output. Some of them appear
automatically, others you have to ask for. We should emphasize that the exact content of these
outputs can be expected to change without notice. The best way to find out exactly what
CASAL prints is to run it and find out.

The main types of printouts are:

An initial header, giving the command by which CASAL was invoked, the date, the
version numbers of the key source files used to build that copy of CASAL, the
version number of CASAL itself, user login, and machine name.

The names of any additional output files that were generated, such as MCMC output
dumps.

The results of the particular task asked for. If you run the model or estimate the
parameters (casal -e, —-E, —r), CASAL will print out the free parameters, the
objective function and its components. If you profile some parameters (casal -p),
CASAL will print out the objective function value and the free parameter estimates,
for each value of each profiled parameter. If you are doing MCMC (casal -m),
CASAL will print the initial point estimate, the approximate covariance matrix, the
lower and upper bounds on the free parameters during MCMC, the start of the chain,
and any changes in step size, etc.

Printouts from the population section of CASAL. You can ask for printouts of the
requests sent to the population section by the estimation and output sections and the
corresponding results. You can request printouts of the initial state, the final state, the
state after every year or every step. These are mostly useful in debugging, i.e., you
can inspect them to figure out whether the population dynamics are what was
intended. The most important of these printouts is ‘population_section’ which
gives a text explanation of how CASAL interprets the population section in the
population.csl file — always look at this printout when you develop a model to
ensure that you have correctly specified the model.

These population printouts only appear if you ask for them in the output . csl file.
You may want to use the —g switch to suppress these printouts, because a major job
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can generate a huge amount of them. (You can achieve the same result by turning all
these requests off in output.csl.)

e Printouts from the estimation section of CASAL. You can ask CASAL to print out
the  parameter lists generated from your population.csl and
estimation.csl files, a good way of checking that your files were read as
intended. You can ask for fits, residuals, and standardised residuals. For debugging
purposes, you can ask CASAL to print out the objective, parameters, or fits every
time the objective function is calculated (so they are printed at each step of a
minimization). You can ask for a text explanation of how CASAL thinks your
estimation section works — always look at this printout when you develop a model.
Also check out the list of parameters that were never accessed by CASAL. Presence
of a parameter on the list may indicate that the parameter name was spelt incorrectly.
(Or it may just mean that the parameter is not used for the task you were doing, for
example max_iters is not used by casal -r). All these estimation printouts
only appear if you ask for them in the output . csl file.

¢  Output quantities. These are model outputs calculated from the parameters. They can
be produced for any set of free parameters, whether it comes from a model run
(casal -r), a point estimate (—e, —E), for values sampled from a Bayesian
posterior (—v), or for projections (-P). The output quantities CASAL can produce are
listed in Section 7.2. Output quantities only appear if you ask for them in the
output.csl file.

7.2 Output quantities

A variety of CASAL outputs are classed as ‘output quantities’. They can be produced for any
set of free parameters, whether it comes from a model run (casal -r), a point estimate (-e,
—E), for values sampled from a Bayesian posterior (—v, see Section 3.1), or for projections (-
P, see Section 7.3).

Output quantities produced by model runs or point estimates are printed in a verbose format.
They are marked with asterisks (*) in the output, which clearly identifies them for reading
into statistical packages such as S-Plus. When output quantities are produced for samples
from a Bayesian posterior or for projections, many sets of quantities are generated, so the
results are dumped to a file in a columnar format instead.

Output quantities include the following:

1. The values of parameters. You can ask for ‘all free parameters’, and/or you can list
the names of parameters, which need not be free. If you ask for an ogive, CASAL
supplies the values of the ogive rather than the ogive arguments. If you ask for a size-
based ogive in an age-based model, CASAL supplies the values of the ogive at the
sizes given in the output parameter print_sizebased_ogives_at. If the size-
based ogive is a selectivity, then probably a better way to extract its values is to use
the selectivity_at pseudo-observations class (see below).

2. The arguments of ogive parameters (as opposed to the values, which see (1) above).

3. Spawning stock biomasses, for each stock in each model year (SSBs, see Section
5.3).
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4. Recruitments, as absolute numbers of fish of each stock, by the year in which they
recruit (see Section 5.4.2).

5. YCS, as deviates, by the year in which they spawn (see Section 5.4.2).

6. ‘True YCS’, defined as YCS x CR x SR, by the year in which the fish spawn (see
Section 5.4.2),

7. The climate variable T by year (see Section 5.4.2).

8. Actual catches, optionally by stock (see Section 5.4.6).

9. Fishing pressures, by fishery, for each year (see Section 5.4.6).

10. By, Ry, B eans Riean> Binitiai» and Riniias for each stock (see Section 5.5).

11. Nuisance ¢’s (see Section 6.7.2).

12. The ‘stock crash’ quantity used to calculate stock risk (see Section 7.3).

13. Proportions-at-age tagged if in an age-based model and release type is deterministic.

14. Fits, residuals, Pearson residuals, and normalised residuals.

15. Pseudo-fits (see below).
Pseudo-fits are a bit of a special case. A pseudo-fit is an output defined as the fits to a set of
pseudo-observations, fake observations which did not occur. This seems like an odd way of
doing things, but in fact enables us to produce a number of useful outputs. For example, the
total biomass for each model year, in a particular area and time step, can be generated as a
pseudo-fit to an abundance series. If you want to see the selected biomass, add a selectivity to
the pseudo-observations. If you want mature biomass, specify that the pseudo-observations
include mature fish only. Similarly you can generate a combined biomass over all areas,
biomass of a particular stock, total numbers rather than biomass, etc. You can also inspect the

age or size composition of the fish by using numbers-at, proportions-at, or catch-at pseudo-
observations. You cannot use pseudo-fits to age/size data, however.

The observation, selectivity_at, can be used as a pseudo-observation to extract the
values of selectivity ogives, for each age/size class in the partition, in a particular year, time
step, area, etc. It is particularly useful for extracting the values of a size-based ogive in an
age-based model, because it converts them into values-at-age. This provides a one-step
method for finding the actual ogive values being used by the model.

To ask for pseudo-fits, you just need to include the pseudo-observations in your
output.csl file, in the same way that you include real observations in your

estimation.csl file. The only differences are:

1. Don’t use relative observation types, i.e., relative_abundance and
relative_ numbers_at. Use the absolute equivalents instead.

2. Don’t supply the actual observation values — there aren’t any.

3. Don’t supply an error distribution, c.v.s, effective N’s, weights, etc.
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For example, insert these commands in the output . cs1 file to get outputs of total biomass
across all areas, halfway through the mortality in time step 2, for all model years (1970 to
2000).

@Qabundance total_ biomass

# output quantity: total biomass in all areas

biomass true

all areas true

step 2

proportion_mortality 0.5

years 1970 1971 1972 1973 1974 1975 1976 1977 ...1998 1999 2000

For projected output quantities (see Section 7.3.2), the range of years should extend into the
future (up to year final).

7.3 Projections

Projection is the process of running the model forwards into the future, using randomised
recruitments and hypothetical catches. CASAL does this in three situations:

1. Calculation of current annual yield (CAY) (see Section 7.5.1).
2. Calculation of current surplus production (CSP) (see Section 7.5.2).

3. Producing projected fishery performance estimators (FPIs), such as stock risk, or
expected biomass in 5 years time.

All three situations use the same method for generating projections, which is described in
Section 7.3.1. The calculation of FPIs is discussed in Section 7.3.2.

7.3.1 Carrying out projections

Projections can either be point-based (i.e., using a single point estimate of the free
parameters), or sample-based (using a sample from the posterior distribution, typically
generated by MCMC using casal -m,or casal -C).

For point-based projections CASAL does a large number of simulations, each using the same
parameters. The simulations will differ only in terms of the randomised recruitments. Year
class strengths will be randomised for the cohorts which will recruit in the ‘projection period’,
i.e., the years current+] to final. You can also choose to randomise YCS for cohorts
which have recently recruited (perhaps because there is no information about the abundance
of these cohorts). If there is an explicit climate-recruitment relationship, CASAL uses the
climate data T up until the last year for which it is provided (which could be as late as the
assessment year, or might even be a forecast for the future) and then randomises 7 for years
after that.

For sample-based projections CASAL does one simulation for each posterior sample point.
Each simulation will use a different set of parameters and a different set of randomised
recruitments. YCS and 7s will be randomised as above (the only difference is that the user
might not need to randomise some recent YCS if their uncertainty was incorporated in the
posterior distribution).
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In either case, the ‘projected expectation’ of a quantity refers to an average over all the
simulations.

When doing projections so as to calculate fishery performance indicators, you need to specify
future catches or future mortalities (either Baranov or non-Baranov) for each fishery in each
year. CASAL does not implement adaptive harvest strategies in projections. If you want to
assess a different catch scenario, you need to change the future catches in the data file and
rerun the program.

You can choose between four methods of randomising the YCS:

1. Lognormal: The randomised YCS are lognormally distributed, with mean 1, and
specified standard deviation and autocorrelation on the log-scale. YCS=exp(X)),
where (X;) are generated as a Gaussian AR(1) process with standard deviation oz and
mean —0.50; (so that the mean of YCS; is 1), and autocorrelation p. (Set p=0 if you
don’t want autocorrelation.)

2. Lognormal-empirical: The randomised YCS are lognormally distributed as per (1)
above. The only difference is that the standard deviation parameter is chosen to give
variability equal to that of the estimated YCS. CASAL uses oy as the standard
deviation of the log of the estimated YCS. Optionally, the calculation of o can be
based on a sub-range of the estimated YCS (since not all YCS are well estimated and
some may even be fixed).

3. Empirical: The randomised YCS are resampled from the estimated YCS. Again, they
can optionally be resampled from a sub-range of the estimated YCS.

4. None: All the randomised YCS are 1. Used for deterministic projections.

If a nonzero autocorrelation parameter p is used with lognormal or lognormal-empirical
randomisations, then the randomised values must depend on the last fixed value YCS;. This
can get a bit ‘messy’.

YCS, —
2

R

Let u, = —0.50',2e , X F= log( ] and (Z;) be standard normal random deviates, then

X = g +O—R(pr + 1_/)221)’ and X, Z:UR"'O-R(/)X,"" 1_p22i+l)‘

Now if the user specifies a very small or zero ok, probably in an effort to generate constant
YCS=1, and a nonzero p, and YCS; is substantially different from 1, then the above formula
gives an unexpected result, the YCS; are not 1, but decay exponentially from YCS; towards 1.
This is because under these assumptions the value of YCS; is highly implausible. CASAL
avoids this situation by erroring out if X/>5 with “last non-random year has implausible
value”. The user can fix the error by setting p=0, increasing oy, or turning off randomisation
(using method none).

We provide the same four methods for randomising the 7s associated with a climate-recruit
relationship (see Section 5.4.2). The only difference is that the randomised 7s need not come
from a distribution with mean 1. For lognormal randomisation, or no randomisation, the mean
of the T is specified by the user. For lognormal-empirical randomisation, it is the mean of the
estimated 7.
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So, to define the method of doing projections, you need to tell CASAL the following:
1. If projections are point based, the number of projections to be done.

2. Which is the first year for which YCS are randomised? The default is
(current—yeu.+1), which is the first year for which YCS are not provided. But you
can specify an earlier year if they want to randomise abundance of some recently
recruited cohorts. (Note that this is the year in which the fish spawn, not the year in
which they recruit.)

3. Future catches or future mortalities (either Baranov or non-Baranov) for each fishery
in each projected year. (This is only necessary for producing FPIs, not for CAY or
CSP.)

4. The methods used to randomise YCS and 75, and the relevant parameters.

Of the above, only (1) is specified in the output.csl file. All the others are in
population.csl since they relate to the recruitment variability of the population, and the
catches.

7.3.2 Calculating projected fishery performance estimators (FPls)

There are many fishery performance estimators (FPIs) commonly used in current New
Zealand stock assessment. These include:

Stock risk.
E(Bcurrent+1/ Beurrent)-
E(Bcurrent+1/ Binitia)-
E(Bcurrent+1/Bo)-
P(Beurrent+k>Beurrent)-

It is impractical to code all conceivable FPIs in CASAL, and it is more useful to dump the
results of each individual projection into a text file, where you can use to generate your own
FPIs in an external package such as S-Plus or Excel. Then if you want to calculate a different
set of FPIs, you can do it without needing to redo the projections in CASAL.

Projected abundances and catches are requested from CASAL as output quantities (see
Section 7.2). Call casal —P to run projections and generate the requested output quantities
for the projected years. Use —1 filename to pass CASAL a parameter estimate or a list of
samples from the posterior. Projected actual catches and SSBs can be requested using the
quantities.actual_catches and quantities.SSBs switches in output.csl.
Various kinds of projected abundances can be requested by asking for abundance ‘pseudo-
fits’ covering a range of years extending into the future. The projected results will then be
sent to the output quantities file (the user must specify a filename as the argument of —P),
which can be imported and processed by another package. There will be one row per
projection.

When projections are point based, casal —P will also print out the expectation of each
output quantity. This is intended as a shortcut so that some FPIs, such as E(B.,en+1/Bo), can
be calculated without using a second software package. (Just divide the expected SSB for year
current+k by By.) On the other hand some FPIs cannot be calculated using this method,
such as P(B.urenr+k > Beurrenr)- YOUu will need to use an external package to calculate these FPIs.
The stock risk is a commonly used output quantity, defined as the probability that the SSB
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will fall below 20% B, in the projection period (for each stock). To allow a shortcut method
for calculating stock risk, we provide a projected output quantity stock_crash, which is
defined as 1 if the SSB falls below 20% B, in the projection period or 0 otherwise (for each
stock). Then you can read off the stock risk as the expectation of stock_crash.

7.4 Deterministic yield calculations

CASAL implements two kinds of deterministic yields, per-recruit analyses (Section 7.4.1)
and deterministic MSY (Section 7.4.2). They are deterministic in the sense that they are based
on simulations which use non-random recruitment with YCS=CR(T)=1 (and hence the
recruitment in year y is R,=RoXSR(SSB,_, .u.r)). The calculations are based on a single set of
parameters (i.e., a point estimate), supplied with —1.

Deterministic yields can be calculated only for single-stock models in CASAL (they may be
implemented for multiple-stock models at a later stage).

Deterministic yield calculations are based on simulations at a constant mortality rate F. This
“mortality rate” can be defined in several ways:

1. If there is only one fishery, then the mortality rate can be defined as an exploitation
rate, which is the catch divided by a pre-fishery measure of biomass B,,.. Thus, the
catch for each year is FB,,. By default, B, is defined as the unselected mature
biomass in all areas combined, in the time step of the fishery, before any mortality is
applied, but you can change this definition. The important thing is that it must come
before the start of the mortality episode in which the catch is taken.

2. 1If there are multiple fisheries, then the mortality rate must be defined as an
exploitation rate as above. Again, B,,, is defined as the unselected mature biomass in
all areas combined, in the time step of the fishery, before any mortality is applied, but
you can change this definition. You have to provide a catch split, i.e., the proportion
of the annual catch which must come from each fishery. Once the catch for the year
has been calculated, it is split between fisheries according to this ‘catch split’.

3. Alternatively, if there is only one fishery and the Baranov catch equation is used, then
you can opt to define the mortality rate as the instantaneous mortality rate of the
Baranov equation. This is a more conventional method and may be required for
comparability with other modelling work.

Note that for options 1 and 2, it may be impossible to take the catch even when F < 1, or
alternatively it may be possible to take the catch even when F > 1, depending on the definition
of B,..

B, is also used in CAY calculations (Section 7.5.1). The catch split is also used for
MCY/CAY calculations and for CSP (Section 7.5.2).

7.4.1 Yield per recruit analyses

Per-recruit analyses are based on yield per recruit (YPR) and/or SSB per recruit (SPR). You
can ask for any or all of the following:

e Data to plot a YPR curve (YPR versus mortality rate) or an SPR curve (SPR versus
mortality rate).
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®  F,u. the mortality rate which maximizes YPR.

e Fy,,, the mortality rate at which the slope of the YPR curve is 0.1 times its slope at the
origin (Gulland & Boerema 1973).

® F.4, the mortality rate at which the SPR is x% of its unfished value (Clark 1991).

Fy; should be calculated only if the mortality rate is an instantaneous rate (an F,; based on
exploitation rates could be calculated, but it is not clear that this would be a “safe” rate of
fishing, in the way that the F;; base on instantaneous rates is believed to be).

Each calculation of YPR or SPR works as follows. A single simulation run is done, starting
from an unfished equilibrium state, and running until the catch and SSB stabilize. Having
reached convergence, the total annual catch, SSB, and annual number of recruits are recorded,
and YPR (total annual catch divided by number of recruits) and/or SPR (SSB divided by
number of recruits) are calculated.

Traditionally, per-recruit analyses are done without a stock-recruitment relationship.
However, it makes no difference either way, so long as the model divides by the actual
number of recruits when calculating per-recruit statistics. However, we have found that
finding the deterministic equilibrium with a high fishing pressure and a strong stock-
recruitment relationship can take many, many simulated years. We recommend turning the
stock-recruitment relationship off for per-recruit analyses to speed up calculations.

You need to provide an initial guesstimate of F, which is used to start off the minimiser for
the estimates of F,.., Fp;, and F.q,. Providing a value in the right ballpark will help the
minimiser find a more accurate solution.

7.4.2 Deterministic MSY

MSY,,, 1s the maximum constant annual catch (using the specified catch split if there is more
than one fishery) which can be sustained under deterministic recruitment. The corresponding
mortality rate is Fiysyq;, and the corresponding SSB is Bysyse,. Both MSY,., and Bysys. are
expressed as percentages of By.

Simulations for deterministic MSY work in the same way as the per-recruit simulations in
Section 7.4.1. For each simulation run with mortality F, the equilibrium total annual catch Cr
and spawning stock biomass SSBr are calculated. CASAL searches over mortality rates to
find Fysyse, the value of F that maximizes Cr. Then MSY,, and Bysy.: are Cr and SSBy
respectively (expressed as percentages of By).

As well as calculating the MSY, you can request data with which to plot a yield versus SSB
curve. You need to tell CASAL the mortality rates F at which SSB and yield are to be
calculated.

The results of a deterministic MSY analysis depend heavily on the stock-recruitment
relationship used. You have to specify one, even if it is ‘none’. Note that you can specify a
different stock-recruitment relationship for simulations from the one used in ordinary model

runs, using the SR_simulation and steepness_simulation parameters (Section
8.9).

You need to provide an initial guesstimate of Fysy..,, which is used to start off the minimiser.
Providing a value in the right ballpark will help the minimiser find a more accurate solution.
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7.5 Stochastic yield estimates

CASAL implements two kinds of stochastic yields, MCY and CAY (Section 7.5.1) and
current surplus production (CSP, Section 7.5.2). They are stochastic in the sense that they are
based on simulations which use randomised recruitments. They can be either point-based or
sample-based. Unlike deterministic yields, they can be calculated for multi-stock models.

7.5.1 MCY/CAY

Calculation of these yields is based on (and extends) the current NIWA procedures described
by Francis (1992). Simulations are carried out to maximise yields, under either constant-catch
or constant-mortality-rate harvesting, subject to the constraint that SSB should not fall below
pB, more than proportion g of the time (defaulting to the traditional p=0.2, g=0.1).

By default, the risk constraint in the MCY/CAY analysis specifies that the spawning stock
biomass falls below pBj less than g x 100% of the time. There is also an option to replace By
by a different reference biomass, which must be the spawning stock biomass (SSB) of the
stock for some year between initial and current. For example, if the stock was believed to be
in good condition in 1985, you could specify that the spawning stock biomass falls below
PBjoss less than g x 100% of the time (where B)gss is the spawning stock biomass in 1985).

CAY calculations are based on simulations at a constant mortality rate F. As per deterministic
yields, this mortality rate can be defined either as an exploitation rate — catch/pre-fishery
biomass B,, — or, if there is only one fishery and the Baranov equation is used, as the
instantaneous mortality rate of the Baranov equation. For both MCY and CAY calculations, if
there are multiple fisheries, you have to provide a carch split, i.e., the proportion of the annual
catch which must come from each fishery. These issues are discussed in more detail in
Section 7.4. Note that B,,,, is also used in deterministic yield calculations (Section 7.4) and the
catch split is also used for deterministic yield calculations and for CSP (Section 7.5.2).

For each of a series of harvest rates, H (either a constant catch or a constant mortality rate)
many simulation runs are carried out. Each simulation starts from a state which has stabilised
under harvest rate H with deterministic recruitment (as per the deterministic simulations in
Section 7.4). The run extends oVer ngiscqrathiee, years with stochastic recruitment. You need to
choose both ngyieeq and ny..,. Hopefully in the long term we will determine good default
values. You need to choose a value of ny;.,,« which is large enough to allow the population to
stabilize under harvest rate H by the end of n,;..4 years. Francis (1992) recommends n..,=the
approximate maximum age of the species=log.(100)/M (the natural mortality rate). We print
E(SSB,_discara) and E(SSB,,_discara + 1) as diagnostics. If the two are about equal, then 7,504, may
be large enough. Try also using different values of n4cqa and ng.., and seeing if it makes any
difference to the results.

With one stock, for each run, CASAL will calculate, over the final period of 7, years, the
mean catch taken over all fisheries C,,, the mean SSB B,,, and the proportion P,y of years in
which the SSB falls below pB,. These quantities will then be averaged over all runs with
harvest rate H to calculate C,(H), B, (H), P,4(H). The program then searches for the
“optimal” harvest rate H,,, which is the value of H which maximises C,,(H), subject to the
constraint that P,(H) < g. Note that the search may take quite a while, depending on how
many simulations you do, and you may want to interrupt it once it reaches a solution which is
good enough for your purposes. You may alternatively want to search manually, interactively
supplying a sequence of harvest rates. In this case, you will be prompted to input a trial H,
CASAL will print C,(H), B,,(H), and P,;4x(H), you will be prompted for a new H, etc. When
you are satisfied, enter a negative value, meaning ‘stop here’. The last value of H you
provided will be used to calculate yields.
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CASAL then calculates yields. Constant-catch simulations give MCY=H,,, (a target catch in
tonnes) or if, according to the current assessment, the stock is depressed (i.e.,
E(current SSB/B)<0.2, where the expectation is over the parameter sets provided), then
MCY=H,,XE(SSBcuren/0.2By) (see Section 4.5 of Francis 1992). This adjusted value is
sometimes labelled the ‘current MCY’ to distinguish it from the ‘long-term MCY’ H,,.
Whichever MCY is calculated, Bycy=B,,(H,,). Constant-mortality-rate simulations give
Feay=H,,, MAY=C,,(H,,,), and Byay=B.,(H,,). The calculation of CAY for next year requires
a l-year projection (Section 7.3). It is the expected catch in the projected year, under a
mortality rate of Fcay.

If an exploitation rate constraint is broken during a deterministic simulation, then the catch
level is clearly too high. We don’t do the following stochastic simulation, and instead take
Cavzoa Bavzoa Pri‘vkzl-

For multiple stocks, we had to reinvent the definitions of MCY and CAY. The quantities C,,,
B,,, and P, are calculated for each stock separately. The “optimal harvest rate” H,, is now
the value of H which maximizes X,C,,, subject to the constraint that P,y (H) < g for all s
(where s indexes the stocks). There is no obvious way to split the MCY between stocks, and
nor is it clear how, if at all, the MCY should be modified if one or more of the stocks is
depressed. However we can calculate the Bycy for each stock, Bycys=Ba,(H,y). For CAY
simulations, Fcay=H,,, MAY=C,, (H,p), Buay=Ba (H,,), and next years CAY, is the
expected catch in the projected year from stock s, under a mortality rate of Fay.

Where there are multiple stocks with one TAC per stock and no multi-stock fisheries, the
natural approach is to calculate MCY's and CAYs separately for each stock using a catch split
in which all the catch comes from a single stock. If you do this, you will need to make sure
that the abundance measure B, used in the catch equation

catch=H*B,,,,

is defined appropriately. B, should refer to the biomass of fish which is targeted by the
fishery. In a multi-area multi-stock assessment, when MCY and CAY are being calculated
for, say, stock A, then the catch split should sum to 1 for fisheries targeting only stock A and
sum to O for all other fisheries. B, should be calculated for the area in which stock A is
located at the time step(s) in which the fishery is carried out, otherwise you will get incorrect
results (because the catch of stock A is proportional to an abundance measure which includes
fish of other stocks, and so high catches may be taken even if few stock A fish remain).

CASAL provides four methods for generating random recruitments for the simulation period
— “lognormal”, “lognormal-empirical”, “empirical”, and ‘“none”. These methods are
described in Section 7.3.1. The only major difference is that there is no ‘last non-random
year’. All the YCS and T’s are random.

As well as recruitment variability, simulations can incorporate uncertainty in several different
ways:

1. For sample-based simulations, the Bayesian posterior is meant to express the
uncertainty in the free parameters. One simulation run is done for each sample from
the posterior (c.f. point-based simulations where many simulations are done using the
single set of parameters). Note that if either “empirical” method of randomising
recruitment is used for sample-based simulations then the recruitment variability will
differ between individual simulations.
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2. For point-based MCY simulations, the uncertainty associated with virgin biomass can
be incorporated (as in the stock assessment software pmod, R.I.C.C. Francis,
unpublished). For each year in the ith simulation run with target catch H, the actual
catch taken will be He;. This is intended to simulate what would happen if the true
virgin abundance was B but was thought to be Be;. The ¢; are assumed to be i.i.d.,
either lognormal or normal with negative values increased to 0, with mean 1 and
default c.v. 0.2 (as assumed by Francis 1992, where the normal distribution was
used). These errors are not used in sample-based simulations because uncertainty in
virgin abundance is meant to be incorporated in the posterior.

3. For both point- and sample-based CAY simulations, the annual stock-assessment
uncertainty can be incorporated (as in the stock assessment software pmod, R.1.C.C.
Francis, unpublished). For each year y in the ith simulation run with target mortality
rate H, the catch will be calculated using F=Heg,. This is intended to simulate what
would happen if the true abundance was B but was thought to be Be,. The ¢, are
assumed to be i.i.d., either lognormal or normal with negative values increased to O,
with mean 1 and default c.v. 0.2 (as assumed by Francis (1992), where the normal
distribution was used). [Not implemented for the case where F is an instantaneous
mortality rate.]

The same random numbers are used for the simulation runs at each harvest rate H. This
increases comparability (e.g., between C,,(H;) and C,,(H,)) and removes random noise from
the C,,(H) and P,;(H) curves.

The results of an MCY or CAY analysis depend heavily on the stock-recruitment relationship
used. You have to specify one, even if it is ‘none’. Note that you can specify a different stock-
recruitment relationship for simulation from the one used in ordinary model runs, using the
SR_simulation and steepness_simulation parameters (Section 8.5).

You need to provide initial guesstimates of MCY and Fcay, which are used to start off the
minimiser. Providing a value in the near the ‘true value’ will help the minimiser find a
solution faster.

7.5.2 Current surplus production (CSP)

CASAL defines the current surplus production (CSP) as the catch in year current+1 which
would make the projected expectation of post-fishery biomass B, in year current+1 equal
to that in year current. The calculation of CSP is hence based on 1-year projections
(Section 7.3), so you must set £inal to at least current+1.

CASAL defines the post-fishery biomass B, as the unselected mature biomass in all areas
combined, in the time step of the last fishery, after all mortality has been applied. You can
change this definition if you want. If there are multiple fisheries then you have to specify a
catch split (the proportion of the catch that must come from each fishery in year
current+1). The same catch split will be used for deterministic yield calculations (Section
7.4) and for MCY/CAY (Section 7.5.1).
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For a multiple-stock model, you have the choice of two approaches. You can either request an
overall CSP (as above) or a CSP for each stock, in which case CASAL does the following for
each stock s:

1. Redefines B, to only include fish of stock s.

2. Finds the total catch in year current+1 which would make the projected
expectation of B, in year current+1 equal to that in year current.

3. Returns the expected amount of that catch which comes from stock s.

It is possible that there will be no CSP, i.e., even if no catch is taken, there is a drop in
expected B,y

You need to provide an initial guesstimate of CSP, which is used to start off the minimiser.
Providing a value near the ‘true value’ will help the minimiser find a more accurate solution.
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8. THE POPULATION.CSL FILE

The population parameters are specified in the population.csl file. See Section 5 for
information about the population section, and Section 3.4 for instructions on writing a

CASAL data file.

8.1 Defining the partition

@size_based
Type
Default
Effects

@n_classes
Conditions

Type
Effects

@class_mins
Conditions

Type
Effects

Should the model be size-based rather than age-based?
Switch

False (i.e., age-based)

Defines the model as either age-based or size-based.

Number of size classes

Must be specified in a size-based model. Ignored in an age-based model.
Integer

Defines the number of size classes

Size class lower limits (plus the upper limit of the last class if it is not a
plus group)

Must be specified in a size-based model. Ignored in an age-based model.
Constant vector

Defines the lower limits of each of the n_classes size classes. If there is no
plus group then an additional value defines the upper limit of the last size
class.

@min_age, @max_age Minimum and maximum age limits

Conditions

Type
Effects

@plus_group
Type
Default
Effects

@plus_group_size
Conditions
Type
Effects

@sex_partition
Type
Default
Effects

@mature_partition
Type
Default
Effects

@n_areas
Type
Default
Effects

Must be specified in an age-based model. Ignored in a size-based model.
2 X integer
Defines the minimum and maximum fish age classes.

Should a plus age or size group be used?
Switch

True (use a plus group)

Defines the last age or size class as a plus group.

Mean size of plus group

Must be specified in a size-based model with a plus group. Otherwise ignored.
Constant

Defines the nominal size of the plus group. Used for ogives and for mean
weight calculations.

Is the partition sex-structured?

Switch

False (the partition is not sex-structured)
Defines whether sex is a character in the partition

Is the partition structured by maturity?

Switch

False (the partition is not structured by maturity)
Defines whether maturity is a character in the partition

Number of areas in the partition

Integer

1 (i.e., a single-area model)

If n_areas=1, then area is not a character in the partition. Otherwise,
n_areas is the number of areas in the partition.
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@area_names
Conditions

Type
Effects

@n_stocks
Type
Default
Effects

@stock_names
Conditions

Type
Effects

@n_growthpaths
Type
Default
Effects

@exclusions_charl
@exclusions_vall
@exclusions_char2

@exclusions_val2
Conditions
Type
Effects

Notes
Example

@n_tags
Type
Default
Effects

Notes

@tag_names
Conditions
Type
Effects
Notes

Area names

Necessary if n_areas > 1, otherwise ignored
Vector of strings

Defines the text label to be associated with each area.

Number of stocks in the partition

Integer

1 (i.e., a single-stock model)

If n_stocks=1, then stock is not a character in the partition. Otherwise,
n_stocks is the number of stocks in the partition.

Stock names

Necessary if n_stocks > 1, otherwise ignored
Vector of strings

Defines the text label to be associated with each stock.

Number of growth-paths in the partition

Integer

1 (i.e., not a growth-path model)

If n_growthpaths=1, then growth-path is not a character in the partition.
Otherwise, n_growthpaths is the number of growth-paths in the partition.

Partition exclusion term 1
Partition exclusion value 1
Partition exclusion term 2

Partition exclusion value 2

All partition exclusion commands must be used if an exclusion is defined
String vector

Defines what combinations of characters are excluded from the partition.
There is no row in the partition for which the character
exclusions_charl [i] takes the value named exclusions_vall[i]
and the character exclusions_char?2[1i] takes the value named
exclusions_val2[i]

Exclusions are never necessary but can improve the model’s execution speed.
If no females are allowed in area “home”, use entries of “sex”, “female”,
“area”, and “home” respectively.

Number of tagging partitions to include in the model

Integer

0 (i.e., none)

Number of different tagging events to use in the model. The default specifies
that no tagging partition is included

If defined, you will usually need to define a tag-release event (see @tag
below) for each of @tag_names

Names of the tagging partition members

Supply only if @n_tags >0

Vector of strings

Defines the text labels of the tagging partition members.

The number of entries should equal @n_tags.

Note that CASAL will always also include a partition member with the label
no_tag. The no_tag partition member will be used as both the source and
sink for moving fish to or from one of the named tagging partition members.
If defined, you will usually need to define a tag-release event (see @tag
below) for each of @tag_names
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@tag_shedding_rate The tag shedding rate to apply to the tagging partitions in the model
Conditions Can be used only if @tag is defined

Type Estimable vector

Default Vector of zeros of length @n_tags (i.e., none)

Effects Removes fish from the tagging partition members as an instantaneous rate.
The default specifies that no tag shedding occurs

Notes Can only be defined if @tag is defined

@tag_loss_props Proportion of tag loss that has occurred by each time step

Conditions Values must sum to 1. Can be used only if @tag is defined

Type Constant vector

Default Vector equal to @annual_cycle.M_props

Effects Defines the proportion of the years tag shedding which has occurred by the
start of each time step.

Example If the first entry of tag_shedding_props is 0.5, then, in time step 1, the

tag shedding applied in time step 1 is calculated as
0.5*tag_shedding_rate.

@tag_growth_loss The growth loss period to apply to the tag partition member

Label The name of a tag partition member

Conditions Can be used only if @tag is defined, and if the growth curve is von
Bertalanffy.

Effects Defines the tag partition member for which to apply a growth loss period

Notes The @tag_growth_loss command should be repeated for each tag

partition member where a no growth period is specified.

nogrowth_period The period of no growth
Command tag_growth_loss[label]
Type Estimable
Effects Defines the no growth period (i.e., the shift in the 7, parameter for the von
Bertalanffy parameter used for calculating size at age).

8.2 Defining the annual cycle and the time sequence

@initial Initial assessment year

Type Integer

Effects Defines the first year of the assessment period.
@current Current assessment year

Type Integer

Effects Defines the last year of the assessment period,

excluding the projection period (if there is one).

@final Final projection year
Type Integer
Effects Defines the last year of the projection period.
@annual_cycle Annual cycle block command
Effects Defines any following commands as @annual_cycle subcommands
time_steps Number of time steps
Command annual_cycle
Type Integer
Effects Defines the number of time steps in the annual cycle

recruitment_time Time step in which recruitment occurs

Command annual_cycle
Type Integer
Effects Defines the time step in which recruitment occurs
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recruitment_areas Area in which where recruitment occurs, for each stock

Command
Conditions
Type
Effects
Notes

spawning_time
Command
Type
Effects

annual_cycle

Necessary if n_areas>1, otherwise ignored

Vector of strings

Defines the area in which recruitment occurs, for each stock

Each entry should be an area label as per area_names. You need one entry
per stock, even if all stocks recruit in the same area.

Time step for recording SSB

annual_cycle

Integer

Defines the time step in which the value of the spawning stock biomass is
recorded

spawning_part_mort Proportion of mortality in the time step before recording SSB

Command
Type
Default
Effects

Notes

spawning_areas
Command
Conditions

Type
Effects
Notes

annual_cycle

Constant

0.5

Defines the proportion of the time step’s mortality episode to apply before
recording SSB.

Should be a real number in [0,1]. Has no effect if there is no mortality in the
time step.

Area for recording SSB, for each stock

annual_cycle

Either spawning_areas or spawning_all_areas is necessary if
n_areas > 1, otherwise ignored.

Vector of strings

Defines the area in which to record SSB for each stock.

Each entry should be an area label as per area_names. Alternatively set
spawning_all_areas.

spawning_all_areas Is SSB recorded for all areas combined?

Command
Conditions

Type
Effects
Notes

spawning_ps
Command
Conditions
Type
Effects
Notes

spawning_p
Command
Conditions
Type
Effects

annual_cycle

Either spawning_areas or spawning_all_areas is necessary if
n_areas>1, otherwise ignored. Only usable in a single-stock model.
Switch

Defines that SSB is recorded for all areas combined.

Alternatively use spawning_areas.

Spawning proportions by age/size class

annual_cycle

Specify either spawning_ps or spawning_p, but not both

Estimable vector

Defines the factor applied to mature biomass to get the SSB for each stock.
This must have length equal to the number of stocks. In the special case with
only one stock, then you can use either spawning_ps OR spawning_p.

Spawning proportion

annual_cycle

Specify either spawning_ps or spawning_p, but not both

Estimable

Defines the factor applied to mature biomass to get the SSB for each stock.

spawning_use_total_B  Should SSB be defined as total biomass rather than mature

Command
Conditions
Type
Default
Effects

biomass?

annual_cycle

Can be specified only if maturity is not a partition character

Switch

In single-area models, false (SSB = mature biomass). Otherwise, no default.
Defines the SSB as the total biomass in the spawning area rather than the
mature biomass.
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Notes

n_growths
Command
Conditions
Type
Effects

growth_times
Command
Conditions
Type
Effects
Notes

aging_time
Command
Conditions
Type
Effects

growth_props
Command
Conditions
Type
Default
Effects

Notes

Example

M_props
Command
Conditions
Type
Default
Effects

baranov

Command
Type
Default
Effects

Notes

The only reason to use this, we believe, is if you have migrated ‘mature’ fish
to a spawning area when maturity is not a partition character. You know all the
fish in the spawning area are mature, but CASAL doesn’t (because the state
does not keep track of maturity).

Number of growth episodes per year
annual_cycle

Can be used only in a size-based model

Integer

Defines the number of growth episodes per year

Time step in which each growth episode occurs
annual_cycle

Can be used only in a size-based model

Integer

Defines the time step in which each growth episode occurs
Number of entries = annual_cycle.n_growths

Time step when age is incremented
annual_cycle

Can be used only in an age-based model
Integer

Defines the time step when ageing occurs

Proportion of growth that has occurred by each time step
annual_cycle

Can be used only in an age-based model

Constant vector

Vector of zeros, i.e., no growth between fish birthdays

Defines the proportion of the year’s growth which has occurred by the start of
each time step.

The mean size of fish of age a years (rounded down) in the ith time step is
calculated as if their age was (a+growth_props[i]).
growth_props[aging_time] must be 0, and the entries of
growth_props have to be non-decreasing between fish birthdays.

If the first entry of growth_props is 0.5, then, in time step 1, the mean size
of 2-year-old fish is calculated as if they were age 2.5.

Proportion of natural mortality that occurs in each time step
annual_cycle

Values must sum to 1

Constant vector

No default

Defines the proportion of the year’s natural mortality which occurs in each
time step

Should fishing mortality be applied simultaneously with natural mortality
using the Baranov equation, rather than instantaneously?
annual_cycle

Sw